Sketcher Module/ro

(Redirected from Sketcher Module/ro)

A basic, fully-constrained sketch‎

The Sketcher Workbench is used to create 2D geometries intended for use in the Part Design Workbench and other workbenches. Generally a 2D geometry is considered the starting-point for most CAD models - a simple 2D sketch can be 'extruded' into a 3D shape, further 2D sketches can be used to create pockets in the surface of this shape and sketches can be used to define 'pads' (extrusions) on the surface of 3D objects. Along with boolean operations, the sketcher forms the core of generative solid shape design.

The Sketcher workbench itself features constraints - allowing 2D shapes to be constrained to precise geometrical definitions. And a constraint solver which calculates the constrained-extent of 2D geometry and allows interactive exploration of sketch degrees-of-freedom.


Basics of constraint sketching

To explain how the Sketcher works, it may be useful to compare it to the "traditional" way of drafting.

Traditional Drafting

The traditional way of CAD drafting inherits from the old drawing board. Orthogonal (2D) views are drawn manually and intended for producing technical drawings (also known as blueprints). Objects are drawn precisely to the intended size or dimension. If you want to draw an horizontal line 100mm in length starting at (0,0), you activate the line tool, either click on the screen or input the (0,0) coordinates for the first point, then make a second click or input the second point coordinates at (100,0). Or you will draw your line without regard to its position, and move it afterwards. When you've finished drawing your geometries, you add dimensions to them.

Constraint Sketching

The Sketcher moves away from this logic. Objects do not need to be drawn exactly as you intend to, because they will be defined later on by constraints. Objects can be drawn loosely, and as long as they are unconstrained, can be modified. They are in effect "floating" and can be moved, stretched, rotated, scaled, and so on. This gives great flexibility in the design process.

What are constraints?

Instead of dimensions, Constraints are used to limit the degrees of freedom of an object. For example, a line without constraints has 4 Degrees Of Freedom (abbreviated as " DOF "): it can be moved horizontally or vertically, it can be stretched, and it can be rotated.

Applying a horizontal or vertical constraint, or an angle constraint (relative to another line or to one of the axes), will limit its capacity to rotate, thus leaving it with 3 degrees of freedom. Locking one of its points in relation to the origin will remove another 2 degrees of freedom. And applying a dimension constraint will remove the last degree of freedom. The line is then considered fully-constrained.

Multiple objects can be constrained between one another. Two lines can be joined through one of their points with the coincident point constraint. An angle can be set between them, or they can be set perpendicular. A line can be tangent to an arc or a circle, and so on. A complex Sketch with multiple objects will have a number of different solutions, and making it fully-constrained means that just one of these possible solutions has been reached based on the applied constraints.

There are two kinds of constraints: geometric and dimensional. They are detailed in the 'The tools' section below.

What the Sketcher is not good for

The Sketcher is not intended for producing 2D blueprints. Once sketches are used to generate a solid feature, they are automatically hidden. Constraints are only visible in Sketch edit mode.

If you only need to produce 2D views for print, and don't want to create 3D models, check out the Draft workbench (keep in mind though that the Draft workbench can also be useful to create 2D geometry not available in the Sketcher at this time, like B-Splines.)

Sketching Workflow

A Sketch is always 2-dimensional (2D). To create a solid, a 2D Sketch of a single enclosed area is created and then either Padded or Revolved to add the 3rd dimension, creating a 3D solid from the 2D Sketch.

If the Sketch has segments that cross one another, places where a Point is not directly on a segment, or places where there are gaps between endpoints of adjacent segments, Pad or Revolve won't create a solid. The exception to this rule is that it doesn't apply to Construction (blue) Geometry.

Inside the enclosed area we can have smaller non-overlapping areas. These will become voids when the 3D solid is created.

The tools

The Sketcher Workbench tools are all located in the Sketcher menu that appears when you load the Sketcher Workbench.

Sketcher Geometries

These are tools for creating objects.

Sketcher Constraints

Constraints are used to define lengths, set rules between sketch elements, and to lock the sketch along the vertical and horizontal axes. Some constraints require the Helper constraints

Not associated with numeric data

Associated with numeric data

For these constraints you can use the expressions. The data may be taken from a spreadsheet.


Other


Preferences


Best Practices

Every CAD user develops his own way of working over time, but there are some useful general principles to follow.


Tutorials

Online version: "http://www.freecadweb.org/wiki/index.php?title=Sketcher_Workbench/ro&oldid=166857"

Navigation menu