FreeCAD/src/Mod/Fem/FemInputWriterCcx.py

582 lines
31 KiB
Python

# ***************************************************************************
# * *
# * Copyright (c) 2015 - Przemo Firszt <przemo@firszt.eu> *
# * Copyright (c) 2015 - Bernd Hahnebach <bernd@bimstatik.org> *
# * *
# * This program is free software; you can redistribute it and/or modify *
# * it under the terms of the GNU Lesser General Public License (LGPL) *
# * as published by the Free Software Foundation; either version 2 of *
# * the License, or (at your option) any later version. *
# * for detail see the LICENCE text file. *
# * *
# * This program is distributed in the hope that it will be useful, *
# * but WITHOUT ANY WARRANTY; without even the implied warranty of *
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
# * GNU Library General Public License for more details. *
# * *
# * You should have received a copy of the GNU Library General Public *
# * License along with this program; if not, write to the Free Software *
# * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *
# * USA *
# * *
# ***************************************************************************
__title__ = "FemInputWriterCcx"
__author__ = "Przemo Firszt, Bernd Hahnebach"
__url__ = "http://www.freecadweb.org"
import FreeCAD
import os
import sys
import time
import FemMeshTools
import FemInputWriter
class FemInputWriterCcx(FemInputWriter.FemInputWriter):
def __init__(self,
analysis_obj, solver_obj,
mesh_obj, mat_obj,
fixed_obj, displacement_obj,
selfweight_obj, force_obj, pressure_obj,
beamsection_obj, shellthickness_obj,
analysis_type=None, eigenmode_parameters=None,
dir_name=None
):
FemInputWriter.FemInputWriter.__init__(self,
analysis_obj, solver_obj,
mesh_obj, mat_obj,
fixed_obj, displacement_obj,
selfweight_obj, force_obj, pressure_obj,
beamsection_obj, shellthickness_obj,
analysis_type, eigenmode_parameters,
dir_name
)
self.file_name = self.dir_name + '/' + self.mesh_object.Name + '.inp'
print('FemInputWriterCcx --> self.dir_name --> ' + self.dir_name)
print('FemInputWriterCcx --> self.file_name --> ' + self.file_name)
def write_calculix_input_file(self):
self.femmesh.writeABAQUS(self.file_name)
# reopen file with "append" and add the analysis definition
inpfile = open(self.file_name, 'a')
inpfile.write('\n\n')
self.write_element_sets_material_and_femelement_type(inpfile)
if self.fixed_objects:
self.write_node_sets_constraints_fixed(inpfile)
if self.displacement_objects:
self.write_node_sets_constraints_displacement(inpfile)
self.write_materials(inpfile)
self.write_femelementsets(inpfile)
self.write_step_begin(inpfile)
if self.fixed_objects:
self.write_constraints_fixed(inpfile)
if self.displacement_objects:
self.write_constraints_displacement(inpfile)
if self.analysis_type is None or self.analysis_type == "static":
if self.selfweight_objects:
self.write_constraints_selfweight(inpfile)
if self.force_objects:
self.write_constraints_force(inpfile)
if self.pressure_objects:
self.write_constraints_pressure(inpfile)
elif self.analysis_type == "frequency":
self.write_analysis_frequency(inpfile)
self.write_outputs_types(inpfile)
self.write_step_end(inpfile)
self.write_footer(inpfile)
inpfile.close()
return self.file_name
def write_element_sets_material_and_femelement_type(self, f):
f.write('\n***********************************************************\n')
f.write('** Element sets for materials and FEM element type (solid, shell, beam)\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
if len(self.material_objects) == 1:
if self.beamsection_objects and len(self.beamsection_objects) == 1: # single mat, single beam
self.get_ccx_elsets_single_mat_single_beam()
elif self.beamsection_objects and len(self.beamsection_objects) > 1: # single mat, multiple beams
self.get_ccx_elsets_single_mat_multiple_beam()
elif self.shellthickness_objects and len(self.shellthickness_objects) == 1: # single mat, single shell
self.get_ccx_elsets_single_mat_single_shell()
elif self.shellthickness_objects and len(self.shellthickness_objects) > 1: # single mat, multiple shells
self.get_ccx_elsets_single_mat_multiple_shell()
else: # single mat, solid
self.get_ccx_elsets_single_mat_solid()
else:
if self.beamsection_objects and len(self.beamsection_objects) == 1: # multiple mats, single beam
self.get_ccx_elsets_multiple_mat_single_beam()
elif self.beamsection_objects and len(self.beamsection_objects) > 1: # multiple mats, multiple beams
self.get_ccx_elsets_multiple_mat_multiple_beam()
elif self.shellthickness_objects and len(self.shellthickness_objects) == 1: # multiple mats, single shell
self.get_ccx_elsets_multiple_mat_single_shell()
elif self.shellthickness_objects and len(self.shellthickness_objects) > 1: # multiple mats, multiple shells
self.get_ccx_elsets_multiple_mat_multiple_shell()
else: # multiple mats, solid
self.get_ccx_elsets_multiple_mat_solid()
for ccx_elset in self.ccx_elsets:
f.write('*ELSET,ELSET=' + ccx_elset['ccx_elset_name'] + '\n')
if ccx_elset['ccx_elset']:
if ccx_elset['ccx_elset'] == self.ccx_eall:
f.write(self.ccx_eall + '\n')
else:
for elid in ccx_elset['ccx_elset']:
f.write(str(elid) + ',\n')
else:
f.write('**No elements found for these objects\n')
def write_node_sets_constraints_fixed(self, f):
# get nodes
self.get_constraints_fixed_nodes()
# write nodes to file
f.write('\n***********************************************************\n')
f.write('** Node set for fixed constraint\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
for femobj in self.fixed_objects: # femobj --> dict, FreeCAD document object is femobj['Object']
f.write('*NSET,NSET=' + femobj['Object'].Name + '\n')
for n in femobj['Nodes']:
f.write(str(n) + ',\n')
def write_node_sets_constraints_displacement(self, f):
# get nodes
self.get_constraints_displacement_nodes()
# write nodes to file
f.write('\n***********************************************************\n')
f.write('** Node sets for prescribed displacement constraint\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
for femobj in self.displacement_objects: # femobj --> dict, FreeCAD document object is femobj['Object']
f.write('*NSET,NSET=' + femobj['Object'].Name + '\n')
for n in femobj['Nodes']:
f.write(str(n) + ',\n')
def write_materials(self, f):
f.write('\n***********************************************************\n')
f.write('** Materials\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
f.write('** Young\'s modulus unit is MPa = N/mm2\n')
f.write('** Density\'s unit is t/mm^3\n')
for femobj in self.material_objects: # femobj --> dict, FreeCAD document object is femobj['Object']
mat_obj = femobj['Object']
# get material properties - Currently in SI units: M/kg/s/Kelvin
YM_in_MPa = 1
PR = 1
density_in_tonne_per_mm3 = 1
try:
YM = FreeCAD.Units.Quantity(mat_obj.Material['YoungsModulus'])
YM_in_MPa = YM.getValueAs('MPa')
except:
FreeCAD.Console.PrintError("No YoungsModulus defined for material: default used\n")
try:
PR = float(mat_obj.Material['PoissonRatio'])
except:
FreeCAD.Console.PrintError("No PoissonRatio defined for material: default used\n")
mat_info_name = mat_obj.Material['Name']
mat_name = mat_obj.Name
# write material properties
f.write('**FreeCAD material name: ' + mat_info_name + '\n')
f.write('*MATERIAL, NAME=' + mat_name + '\n')
f.write('*ELASTIC \n')
f.write('{0}, {1:.3f}\n'.format(YM_in_MPa, PR))
try:
density = FreeCAD.Units.Quantity(mat_obj.Material['Density'])
density_in_tonne_per_mm3 = float(density.getValueAs('t/mm^3'))
except:
FreeCAD.Console.PrintError("No Density defined for material: default used\n")
f.write('*DENSITY \n')
f.write('{0:.3e}, \n'.format(density_in_tonne_per_mm3))
def write_femelementsets(self, f):
f.write('\n***********************************************************\n')
f.write('** Sections\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
for ccx_elset in self.ccx_elsets:
if ccx_elset['ccx_elset']:
if 'beamsection_obj'in ccx_elset: # beam mesh
beamsec_obj = ccx_elset['beamsection_obj']
elsetdef = 'ELSET=' + ccx_elset['ccx_elset_name'] + ', '
material = 'MATERIAL=' + ccx_elset['mat_obj_name']
height = beamsec_obj.Height.getValueAs('mm')
width = beamsec_obj.Width.getValueAs('mm')
if width == 0:
section_type = ', SECTION=CIRC'
setion_geo = str(height) + '\n'
else:
section_type = ', SECTION=RECT'
setion_geo = str(height) + ', ' + str(width) + '\n'
setion_def = '*BEAM SECTION, ' + elsetdef + material + section_type + '\n'
f.write(setion_def)
f.write(setion_geo)
elif 'shellthickness_obj'in ccx_elset: # shell mesh
shellth_obj = ccx_elset['shellthickness_obj']
elsetdef = 'ELSET=' + ccx_elset['ccx_elset_name'] + ', '
material = 'MATERIAL=' + ccx_elset['mat_obj_name']
setion_def = '*SHELL SECTION, ' + elsetdef + material + '\n'
setion_geo = str(shellth_obj.Thickness.getValueAs('mm')) + '\n'
f.write(setion_def)
f.write(setion_geo)
else: # solid mesh
elsetdef = 'ELSET=' + ccx_elset['ccx_elset_name'] + ', '
material = 'MATERIAL=' + ccx_elset['mat_obj_name']
setion_def = '*SOLID SECTION, ' + elsetdef + material + '\n'
f.write(setion_def)
def write_step_begin(self, f):
f.write('\n***********************************************************\n')
f.write('** One step is needed to run the mechanical analysis of FreeCAD\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
static_frequency_step = '*STEP'
if self.solver_obj.GeometricalNonlinearity == "nonlinear" and self.analysis_type == 'static':
static_frequency_step += ', NLGEOM' # https://www.comsol.com/blogs/what-is-geometric-nonlinearity/
elif self.solver_obj.GeometricalNonlinearity == "nonlinear" and self.analysis_type == 'frequency':
print('Analysis type frequency and geometrical nonlinear analyis are not allowed together, linear is used instead!')
f.write(static_frequency_step + '\n')
def write_constraints_fixed(self, f):
f.write('\n***********************************************************\n')
f.write('** Constraints\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
for femobj in self.fixed_objects: # femobj --> dict, FreeCAD document object is femobj['Object']
fix_obj_name = femobj['Object'].Name
f.write('*BOUNDARY\n')
f.write(fix_obj_name + ',1\n')
f.write(fix_obj_name + ',2\n')
f.write(fix_obj_name + ',3\n')
if self.beamsection_objects or self.shellthickness_objects:
f.write(fix_obj_name + ',4\n')
f.write(fix_obj_name + ',5\n')
f.write(fix_obj_name + ',6\n')
f.write('\n')
def write_constraints_displacement(self, f):
f.write('\n***********************************************************\n')
f.write('** Displacement constraint applied\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
for femobj in self.displacement_objects: # femobj --> dict, FreeCAD document object is femobj['Object']
disp_obj = femobj['Object']
disp_obj_name = disp_obj.Name
f.write('*BOUNDARY\n')
if disp_obj.xFix:
f.write(disp_obj_name + ',1\n')
elif not disp_obj.xFree:
f.write(disp_obj_name + ',1,1,' + str(disp_obj.xDisplacement) + '\n')
if disp_obj.yFix:
f.write(disp_obj_name + ',2\n')
elif not disp_obj.yFree:
f.write(disp_obj_name + ',2,2,' + str(disp_obj.yDisplacement) + '\n')
if disp_obj.zFix:
f.write(disp_obj_name + ',3\n')
elif not disp_obj.zFree:
f.write(disp_obj_name + ',3,3,' + str(disp_obj.zDisplacement) + '\n')
if self.beamsection_objects or self.shellthickness_objects:
if disp_obj.rotxFix:
f.write(disp_obj_name + ',4\n')
elif not disp_obj.rotxFree:
f.write(disp_obj_name + ',4,4,' + str(disp_obj.xRotation) + '\n')
if disp_obj.rotyFix:
f.write(disp_obj_name + ',5\n')
elif not disp_obj.rotyFree:
f.write(disp_obj_name + ',5,5,' + str(disp_obj.yRotation) + '\n')
if disp_obj.rotzFix:
f.write(disp_obj_name + ',6\n')
elif not disp_obj.rotzFree:
f.write(disp_obj_name + ',6,6,' + str(disp_obj.zRotation) + '\n')
f.write('\n')
def write_constraints_selfweight(self, f):
f.write('\n***********************************************************\n')
f.write('** Self weight\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
for femobj in self.selfweight_objects: # femobj --> dict, FreeCAD document object is femobj['Object']
selwei_obj_name = femobj['Object'].Name
f.write('** ' + selwei_obj_name + '\n')
f.write('*DLOAD\n')
f.write('Eall,GRAV,9810,0,0,-1\n')
f.write('\n')
# die grav (erdbeschleunigung) ist fuer alle gleich
# die verschidene density wurde in den material sets geschrieben !
def write_constraints_force(self, f):
# check shape type of reference shape and get node loads
self.get_constraints_force_nodeloads()
# write node loads to file
f.write('\n***********************************************************\n')
f.write('** Node loads\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
f.write('*CLOAD\n')
for femobj in self.force_objects: # femobj --> dict, FreeCAD document object is femobj['Object']
frc_obj_name = femobj['Object'].Name
direction_vec = femobj['Object'].DirectionVector
f.write('** ' + frc_obj_name + '\n')
for ref_shape in femobj['NodeLoadTable']:
f.write('** ' + ref_shape[0] + '\n')
for n in sorted(ref_shape[1]):
node_load = ref_shape[1][n]
if (direction_vec.x != 0.0):
v1 = "{:.13E}".format(direction_vec.x * node_load)
f.write(str(n) + ',1,' + v1 + '\n')
if (direction_vec.y != 0.0):
v2 = "{:.13E}".format(direction_vec.y * node_load)
f.write(str(n) + ',2,' + v2 + '\n')
if (direction_vec.z != 0.0):
v3 = "{:.13E}".format(direction_vec.z * node_load)
f.write(str(n) + ',3,' + v3 + '\n')
f.write('\n')
f.write('\n')
def write_constraints_pressure(self, f):
f.write('\n***********************************************************\n')
f.write('** Element + CalculiX face + load in [MPa]\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
for femobj in self.pressure_objects: # femobj --> dict, FreeCAD document object is femobj['Object']
prs_obj = femobj['Object']
f.write('*DLOAD\n')
for o, elem_tup in prs_obj.References:
rev = -1 if prs_obj.Reversed else 1
for elem in elem_tup:
ref_shape = o.Shape.getElement(elem)
if ref_shape.ShapeType == 'Face':
v = self.femmesh.getccxVolumesByFace(ref_shape)
f.write("** Load on face {}\n".format(elem))
for i in v:
f.write("{},P{},{}\n".format(i[0], i[1], rev * prs_obj.Pressure))
def write_analysis_frequency(self, f):
f.write('\n***********************************************************\n')
f.write('** Frequency analysis\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
f.write('*FREQUENCY\n')
f.write('{},{},{}\n'.format(self.no_of_eigenfrequencies, self.eigenfrequeny_range_low, self.eigenfrequeny_range_high))
def write_outputs_types(self, f):
f.write('\n***********************************************************\n')
f.write('** Outputs --> frd file\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
if self.beamsection_objects or self.shellthickness_objects:
f.write('*NODE FILE, OUTPUT=2d\n')
else:
f.write('*NODE FILE\n')
f.write('U\n')
f.write('*EL FILE\n')
f.write('S, E\n')
f.write('** outputs --> dat file\n')
f.write('*NODE PRINT , NSET=Nall \n')
f.write('U \n')
f.write('*EL PRINT , ELSET=Eall \n')
f.write('S \n')
def write_step_end(self, f):
f.write('\n***********************************************************\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
f.write('*END STEP \n')
def write_footer(self, f):
f.write('\n***********************************************************\n')
f.write('** CalculiX Input file\n')
f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name))
f.write('** written by --> FreeCAD ' + self.fc_ver[0] + '.' + self.fc_ver[1] + '.' + self.fc_ver[2] + '\n')
f.write('** written on --> ' + time.ctime() + '\n')
f.write('** file name --> ' + os.path.basename(FreeCAD.ActiveDocument.FileName) + '\n')
f.write('** analysis name --> ' + self.analysis.Name + '\n')
f.write('**\n')
f.write('**\n')
f.write('**\n')
f.write('** Units\n')
f.write('**\n')
f.write('** Geometry (mesh data) --> mm\n')
f.write("** Materials (Young's modulus) --> N/mm2 = MPa\n")
f.write('** Loads (nodal loads) --> N\n')
f.write('**\n')
# self.ccx_elsets = [ {
# 'beamsection_obj' : 'beamsection_obj' if exists
# 'shellthickness_obj' : shellthickness_obj' if exists
# 'ccx_elset' : [e1, e2, e3, ... , en] or string self.ccx_eall
# 'ccx_elset_name' : 'ccx_identifier_elset'
# 'mat_obj_name' : 'mat_obj.Name'
# 'ccx_mat_name' : 'mat_obj.Material['Name']' !!! not unique !!!
# },
# {}, ... , {} ]
def get_ccx_elsets_single_mat_single_beam(self):
mat_obj = self.material_objects[0]['Object']
beamsec_obj = self.beamsection_objects[0]['Object']
ccx_elset = {}
ccx_elset['beamsection_obj'] = beamsec_obj
ccx_elset['ccx_elset'] = self.ccx_eall
ccx_elset['ccx_elset_name'] = get_ccx_elset_beam_name(mat_obj.Name, beamsec_obj.Name)
ccx_elset['mat_obj_name'] = mat_obj.Name
ccx_elset['ccx_mat_name'] = mat_obj.Material['Name']
self.ccx_elsets.append(ccx_elset)
def get_ccx_elsets_single_mat_single_shell(self):
mat_obj = self.material_objects[0]['Object']
shellth_obj = self.shellthickness_objects[0]['Object']
ccx_elset = {}
ccx_elset['shellthickness_obj'] = shellth_obj
ccx_elset['ccx_elset'] = self.ccx_eall
ccx_elset['ccx_elset_name'] = get_ccx_elset_shell_name(mat_obj.Name, shellth_obj.Name)
ccx_elset['mat_obj_name'] = mat_obj.Name
ccx_elset['ccx_mat_name'] = mat_obj.Material['Name']
self.ccx_elsets.append(ccx_elset)
def get_ccx_elsets_single_mat_solid(self):
mat_obj = self.material_objects[0]['Object']
ccx_elset = {}
ccx_elset['ccx_elset'] = self.ccx_eall
ccx_elset['ccx_elset_name'] = get_ccx_elset_solid_name(mat_obj.Name)
ccx_elset['mat_obj_name'] = mat_obj.Name
ccx_elset['ccx_mat_name'] = mat_obj.Material['Name']
self.ccx_elsets.append(ccx_elset)
def get_ccx_elsets_single_mat_multiple_beam(self):
if not self.femelement_table:
self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh)
mat_obj = self.material_objects[0]['Object']
FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.beamsection_objects)
for beamsec_data in self.beamsection_objects:
beamsec_obj = beamsec_data['Object']
ccx_elset = {}
ccx_elset['beamsection_obj'] = beamsec_obj
ccx_elset['ccx_elset'] = beamsec_data['FEMElements']
ccx_elset['ccx_elset_name'] = get_ccx_elset_beam_name(mat_obj.Name, beamsec_obj.Name, None, beamsec_data['ShortName'])
ccx_elset['mat_obj_name'] = mat_obj.Name
ccx_elset['ccx_mat_name'] = mat_obj.Material['Name']
self.ccx_elsets.append(ccx_elset)
def get_ccx_elsets_single_mat_multiple_shell(self):
if not self.femelement_table:
self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh)
mat_obj = self.material_objects[0]['Object']
FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.shellthickness_objects)
for shellth_data in self.shellthickness_objects:
shellth_obj = shellth_data['Object']
ccx_elset = {}
ccx_elset['shellthickness_obj'] = shellth_obj
ccx_elset['ccx_elset'] = shellth_data['FEMElements']
ccx_elset['ccx_elset_name'] = get_ccx_elset_shell_name(mat_obj.Name, shellth_obj.Name, None, shellth_data['ShortName'])
ccx_elset['mat_obj_name'] = mat_obj.Name
ccx_elset['ccx_mat_name'] = mat_obj.Material['Name']
self.ccx_elsets.append(ccx_elset)
def get_ccx_elsets_multiple_mat_single_beam(self):
if not self.femelement_table:
self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh)
beamsec_obj = self.beamsection_objects[0]['Object']
FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.material_objects)
for mat_data in self.material_objects:
mat_obj = mat_data['Object']
ccx_elset = {}
ccx_elset['beamsection_obj'] = beamsec_obj
ccx_elset['ccx_elset'] = mat_data['FEMElements']
ccx_elset['ccx_elset_name'] = get_ccx_elset_beam_name(mat_obj.Name, beamsec_obj.Name, mat_data['ShortName'])
ccx_elset['mat_obj_name'] = mat_obj.Name
ccx_elset['ccx_mat_name'] = mat_obj.Material['Name']
self.ccx_elsets.append(ccx_elset)
def get_ccx_elsets_multiple_mat_single_shell(self):
if not self.femelement_table:
self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh)
shellth_obj = self.shellthickness_objects[0]['Object']
FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.material_objects)
for mat_data in self.material_objects:
mat_obj = mat_data['Object']
ccx_elset = {}
ccx_elset['shellthickness_obj'] = shellth_obj
ccx_elset['ccx_elset'] = mat_data['FEMElements']
ccx_elset['ccx_elset_name'] = get_ccx_elset_shell_name(mat_obj.Name, shellth_obj.Name, mat_data['ShortName'])
ccx_elset['mat_obj_name'] = mat_obj.Name
ccx_elset['ccx_mat_name'] = mat_obj.Material['Name']
self.ccx_elsets.append(ccx_elset)
def get_ccx_elsets_multiple_mat_solid(self):
if not self.femelement_table:
self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh)
FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.material_objects)
for mat_data in self.material_objects:
mat_obj = mat_data['Object']
ccx_elset = {}
ccx_elset['ccx_elset'] = mat_data['FEMElements']
ccx_elset['ccx_elset_name'] = get_ccx_elset_solid_name(mat_obj.Name, None, mat_data['ShortName'])
ccx_elset['mat_obj_name'] = mat_obj.Name
ccx_elset['ccx_mat_name'] = mat_obj.Material['Name']
self.ccx_elsets.append(ccx_elset)
def get_ccx_elsets_multiple_mat_multiple_beam(self):
if not self.femelement_table:
self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh)
FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.beamsection_objects)
FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.material_objects)
for beamsec_data in self.beamsection_objects:
beamsec_obj = beamsec_data['Object']
for mat_data in self.material_objects:
mat_obj = mat_data['Object']
ccx_elset = {}
ccx_elset['beamsection_obj'] = beamsec_obj
elemids = []
for elemid in beamsec_data['FEMElements']:
if elemid in mat_data['FEMElements']:
elemids.append(elemid)
ccx_elset['ccx_elset'] = elemids
ccx_elset['ccx_elset_name'] = get_ccx_elset_beam_name(mat_obj.Name, beamsec_obj.Name, mat_data['ShortName'], beamsec_data['ShortName'])
ccx_elset['mat_obj_name'] = mat_obj.Name
ccx_elset['ccx_mat_name'] = mat_obj.Material['Name']
self.ccx_elsets.append(ccx_elset)
def get_ccx_elsets_multiple_mat_multiple_shell(self):
if not self.femelement_table:
self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh)
FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.shellthickness_objects)
FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.material_objects)
for shellth_data in self.shellthickness_objects:
shellth_obj = shellth_data['Object']
for mat_data in self.material_objects:
mat_obj = mat_data['Object']
ccx_elset = {}
ccx_elset['shellthickness_obj'] = shellth_obj
elemids = []
for elemid in shellth_data['FEMElements']:
if elemid in mat_data['FEMElements']:
elemids.append(elemid)
ccx_elset['ccx_elset'] = elemids
ccx_elset['ccx_elset_name'] = get_ccx_elset_shell_name(mat_obj.Name, shellth_obj.Name, mat_data['ShortName'], shellth_data['ShortName'])
ccx_elset['mat_obj_name'] = mat_obj.Name
ccx_elset['ccx_mat_name'] = mat_obj.Material['Name']
self.ccx_elsets.append(ccx_elset)
# Helpers
def get_ccx_elset_beam_name(mat_name, beamsec_name, mat_short_name=None, beamsec_short_name=None):
if not mat_short_name:
mat_short_name = 'Mat0'
if not beamsec_short_name:
beamsec_short_name = 'Beam0'
if len(mat_name + beamsec_name) > 20: # max identifier lenght in CalculiX for beam elsets
return mat_short_name + beamsec_short_name
else:
return mat_name + beamsec_name
def get_ccx_elset_shell_name(mat_name, shellth_name, mat_short_name=None, shellth_short_name=None):
if not mat_short_name:
mat_short_name = 'Mat0'
if not shellth_short_name:
shellth_short_name = 'Shell0'
if len(mat_name + shellth_name) > 80: # standard max identifier lenght in CalculiX
return mat_short_name + shellth_short_name
else:
return mat_name + shellth_name
def get_ccx_elset_solid_name(mat_name, solid_name=None, mat_short_name=None):
if not solid_name:
solid_name = 'Solid'
if not mat_short_name:
mat_short_name = 'Mat0'
if len(mat_name + solid_name) > 80: # standard max identifier lenght in CalculiX
return mat_short_name + solid_name
else:
return mat_name + solid_name