FreeCAD/src/Mod/Path/libarea/AreaClipper.cpp
2015-07-23 23:17:15 -03:00

504 lines
14 KiB
C++

// AreaClipper.cpp
// implements CArea methods using Angus Johnson's "Clipper"
/*==============================
Copyright (c) 2011-2015 Dan Heeks
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==============================*/
#include "Area.h"
#include "clipper.hpp"
using namespace ClipperLib;
#define TPolygon Path
#define TPolyPolygon Paths
bool CArea::HolesLinked(){ return false; }
//static const double PI = 3.1415926535897932;
static double Clipper4Factor = 10000.0;
class DoubleAreaPoint
{
public:
double X, Y;
DoubleAreaPoint(double x, double y){X = x; Y = y;}
DoubleAreaPoint(const IntPoint& p){X = (double)(p.X) / Clipper4Factor; Y = (double)(p.Y) / Clipper4Factor;}
IntPoint int_point(){return IntPoint((long64)(X * Clipper4Factor), (long64)(Y * Clipper4Factor));}
};
static std::list<DoubleAreaPoint> pts_for_AddVertex;
static void AddPoint(const DoubleAreaPoint& p)
{
pts_for_AddVertex.push_back(p);
}
static void AddVertex(const CVertex& vertex, const CVertex* prev_vertex)
{
if(vertex.m_type == 0 || prev_vertex == NULL)
{
AddPoint(DoubleAreaPoint(vertex.m_p.x * CArea::m_units, vertex.m_p.y * CArea::m_units));
}
else
{
if(vertex.m_p != prev_vertex->m_p)
{
double phi,dphi,dx,dy;
int Segments;
int i;
double ang1,ang2,phit;
dx = (prev_vertex->m_p.x - vertex.m_c.x) * CArea::m_units;
dy = (prev_vertex->m_p.y - vertex.m_c.y) * CArea::m_units;
ang1=atan2(dy,dx);
if (ang1<0) ang1+=2.0*PI;
dx = (vertex.m_p.x - vertex.m_c.x) * CArea::m_units;
dy = (vertex.m_p.y - vertex.m_c.y) * CArea::m_units;
ang2=atan2(dy,dx);
if (ang2<0) ang2+=2.0*PI;
if (vertex.m_type == -1)
{ //clockwise
if (ang2 > ang1)
phit=2.0*PI-ang2+ ang1;
else
phit=ang1-ang2;
}
else
{ //counter_clockwise
if (ang1 > ang2)
phit=-(2.0*PI-ang1+ ang2);
else
phit=-(ang2-ang1);
}
//what is the delta phi to get an accurancy of aber
double radius = sqrt(dx*dx + dy*dy);
dphi=2*acos((radius-CArea::m_accuracy)/radius);
//set the number of segments
if (phit > 0)
Segments=(int)ceil(phit/dphi);
else
Segments=(int)ceil(-phit/dphi);
if (Segments < 1)
Segments=1;
if (Segments > 100)
Segments=100;
dphi=phit/(Segments);
double px = prev_vertex->m_p.x * CArea::m_units;
double py = prev_vertex->m_p.y * CArea::m_units;
for (i=1; i<=Segments; i++)
{
dx = px - vertex.m_c.x * CArea::m_units;
dy = py - vertex.m_c.y * CArea::m_units;
phi=atan2(dy,dx);
double nx = vertex.m_c.x * CArea::m_units + radius * cos(phi-dphi);
double ny = vertex.m_c.y * CArea::m_units + radius * sin(phi-dphi);
AddPoint(DoubleAreaPoint(nx, ny));
px = nx;
py = ny;
}
}
}
}
static bool IsPolygonClockwise(const TPolygon& p)
{
#if 1
double area = 0.0;
unsigned int s = p.size();
for(unsigned int i = 0; i<s; i++)
{
int im1 = i-1;
if(im1 < 0)im1 += s;
DoubleAreaPoint pt0(p[im1]);
DoubleAreaPoint pt1(p[i]);
area += 0.5 * (pt1.X - pt0.X) * (pt0.Y + pt1.Y);
}
return area > 0.0;
#else
return IsClockwise(p);
#endif
}
static void MakeLoop(const DoubleAreaPoint &pt0, const DoubleAreaPoint &pt1, const DoubleAreaPoint &pt2, double radius)
{
Point p0(pt0.X, pt0.Y);
Point p1(pt1.X, pt1.Y);
Point p2(pt2.X, pt2.Y);
Point forward0 = p1 - p0;
Point right0(forward0.y, -forward0.x);
right0.normalize();
Point forward1 = p2 - p1;
Point right1(forward1.y, -forward1.x);
right1.normalize();
int arc_dir = (radius > 0) ? 1 : -1;
CVertex v0(0, p1 + right0 * radius, Point(0, 0));
CVertex v1(arc_dir, p1 + right1 * radius, p1);
CVertex v2(0, p2 + right1 * radius, Point(0, 0));
double save_units = CArea::m_units;
CArea::m_units = 1.0;
AddVertex(v1, &v0);
AddVertex(v2, &v1);
CArea::m_units = save_units;
}
static void OffsetWithLoops(const TPolyPolygon &pp, TPolyPolygon &pp_new, double inwards_value)
{
Clipper c;
bool inwards = (inwards_value > 0);
bool reverse = false;
double radius = -fabs(inwards_value);
if(inwards)
{
// add a large square on the outside, to be removed later
TPolygon p;
p.push_back(DoubleAreaPoint(-10000.0, -10000.0).int_point());
p.push_back(DoubleAreaPoint(-10000.0, 10000.0).int_point());
p.push_back(DoubleAreaPoint(10000.0, 10000.0).int_point());
p.push_back(DoubleAreaPoint(10000.0, -10000.0).int_point());
c.AddPath(p, ptSubject, true);
}
else
{
reverse = true;
}
for(unsigned int i = 0; i < pp.size(); i++)
{
const TPolygon& p = pp[i];
pts_for_AddVertex.clear();
if(p.size() > 2)
{
if(reverse)
{
for(unsigned int j = p.size()-1; j > 1; j--)MakeLoop(p[j], p[j-1], p[j-2], radius);
MakeLoop(p[1], p[0], p[p.size()-1], radius);
MakeLoop(p[0], p[p.size()-1], p[p.size()-2], radius);
}
else
{
MakeLoop(p[p.size()-2], p[p.size()-1], p[0], radius);
MakeLoop(p[p.size()-1], p[0], p[1], radius);
for(unsigned int j = 2; j < p.size(); j++)MakeLoop(p[j-2], p[j-1], p[j], radius);
}
TPolygon loopy_polygon;
loopy_polygon.reserve(pts_for_AddVertex.size());
for(std::list<DoubleAreaPoint>::iterator It = pts_for_AddVertex.begin(); It != pts_for_AddVertex.end(); It++)
{
loopy_polygon.push_back(It->int_point());
}
c.AddPath(loopy_polygon, ptSubject, true);
pts_for_AddVertex.clear();
}
}
//c.ForceOrientation(false);
c.Execute(ctUnion, pp_new, pftNonZero, pftNonZero);
if(inwards)
{
// remove the large square
if(pp_new.size() > 0)
{
pp_new.erase(pp_new.begin());
}
}
else
{
// reverse all the resulting polygons
TPolyPolygon copy = pp_new;
pp_new.clear();
pp_new.resize(copy.size());
for(unsigned int i = 0; i < copy.size(); i++)
{
const TPolygon& p = copy[i];
TPolygon p_new;
p_new.resize(p.size());
int size_minus_one = p.size() - 1;
for(unsigned int j = 0; j < p.size(); j++)p_new[j] = p[size_minus_one - j];
pp_new[i] = p_new;
}
}
}
static void MakeObround(const Point &pt0, const CVertex &vt1, double radius)
{
Span span(pt0, vt1);
Point forward0 = span.GetVector(0.0);
Point forward1 = span.GetVector(1.0);
Point right0(forward0.y, -forward0.x);
Point right1(forward1.y, -forward1.x);
right0.normalize();
right1.normalize();
CVertex v0(pt0 + right0 * radius);
CVertex v1(vt1.m_type, vt1.m_p + right1 * radius, vt1.m_c);
CVertex v2(1, vt1.m_p + right1 * -radius, vt1.m_p);
CVertex v3(-vt1.m_type, pt0 + right0 * -radius, vt1.m_c);
CVertex v4(1, pt0 + right0 * radius, pt0);
double save_units = CArea::m_units;
CArea::m_units = 1.0;
AddVertex(v0, NULL);
AddVertex(v1, &v0);
AddVertex(v2, &v1);
AddVertex(v3, &v2);
AddVertex(v4, &v3);
CArea::m_units = save_units;
}
static void OffsetSpansWithObrounds(const CArea& area, TPolyPolygon &pp_new, double radius)
{
Clipper c;
for(std::list<CCurve>::const_iterator It = area.m_curves.begin(); It != area.m_curves.end(); It++)
{
pts_for_AddVertex.clear();
const CCurve& curve = *It;
const CVertex* prev_vertex = NULL;
for(std::list<CVertex>::const_iterator It2 = curve.m_vertices.begin(); It2 != curve.m_vertices.end(); It2++)
{
const CVertex& vertex = *It2;
if(prev_vertex)
{
MakeObround(prev_vertex->m_p, vertex, radius);
TPolygon loopy_polygon;
loopy_polygon.reserve(pts_for_AddVertex.size());
for(std::list<DoubleAreaPoint>::iterator It = pts_for_AddVertex.begin(); It != pts_for_AddVertex.end(); It++)
{
loopy_polygon.push_back(It->int_point());
}
c.AddPath(loopy_polygon, ptSubject, true);
pts_for_AddVertex.clear();
}
prev_vertex = &vertex;
}
}
pp_new.clear();
c.Execute(ctUnion, pp_new, pftNonZero, pftNonZero);
// reverse all the resulting polygons
TPolyPolygon copy = pp_new;
pp_new.clear();
pp_new.resize(copy.size());
for(unsigned int i = 0; i < copy.size(); i++)
{
const TPolygon& p = copy[i];
TPolygon p_new;
p_new.resize(p.size());
int size_minus_one = p.size() - 1;
for(unsigned int j = 0; j < p.size(); j++)p_new[j] = p[size_minus_one - j];
pp_new[i] = p_new;
}
}
static void MakePolyPoly( const CArea& area, TPolyPolygon &pp, bool reverse = true ){
pp.clear();
for(std::list<CCurve>::const_iterator It = area.m_curves.begin(); It != area.m_curves.end(); It++)
{
pts_for_AddVertex.clear();
const CCurve& curve = *It;
const CVertex* prev_vertex = NULL;
for(std::list<CVertex>::const_iterator It2 = curve.m_vertices.begin(); It2 != curve.m_vertices.end(); It2++)
{
const CVertex& vertex = *It2;
if(prev_vertex)AddVertex(vertex, prev_vertex);
prev_vertex = &vertex;
}
TPolygon p;
p.resize(pts_for_AddVertex.size());
if(reverse)
{
unsigned int i = pts_for_AddVertex.size() - 1;// clipper wants them the opposite way to CArea
for(std::list<DoubleAreaPoint>::iterator It = pts_for_AddVertex.begin(); It != pts_for_AddVertex.end(); It++, i--)
{
p[i] = It->int_point();
}
}
else
{
unsigned int i = 0;
for(std::list<DoubleAreaPoint>::iterator It = pts_for_AddVertex.begin(); It != pts_for_AddVertex.end(); It++, i++)
{
p[i] = It->int_point();
}
}
pp.push_back(p);
}
}
static void SetFromResult( CCurve& curve, const TPolygon& p, bool reverse = true )
{
for(unsigned int j = 0; j < p.size(); j++)
{
const IntPoint &pt = p[j];
DoubleAreaPoint dp(pt);
CVertex vertex(0, Point(dp.X / CArea::m_units, dp.Y / CArea::m_units), Point(0.0, 0.0));
if(reverse)curve.m_vertices.push_front(vertex);
else curve.m_vertices.push_back(vertex);
}
// make a copy of the first point at the end
if(reverse)curve.m_vertices.push_front(curve.m_vertices.back());
else curve.m_vertices.push_back(curve.m_vertices.front());
if(CArea::m_fit_arcs)curve.FitArcs();
}
static void SetFromResult( CArea& area, const TPolyPolygon& pp, bool reverse = true )
{
// delete existing geometry
area.m_curves.clear();
for(unsigned int i = 0; i < pp.size(); i++)
{
const TPolygon& p = pp[i];
area.m_curves.push_back(CCurve());
CCurve &curve = area.m_curves.back();
SetFromResult(curve, p, reverse);
}
}
void CArea::Subtract(const CArea& a2)
{
Clipper c;
TPolyPolygon pp1, pp2;
MakePolyPoly(*this, pp1);
MakePolyPoly(a2, pp2);
c.AddPaths(pp1, ptSubject, true);
c.AddPaths(pp2, ptClip, true);
TPolyPolygon solution;
c.Execute(ctDifference, solution);
SetFromResult(*this, solution);
}
void CArea::Intersect(const CArea& a2)
{
Clipper c;
TPolyPolygon pp1, pp2;
MakePolyPoly(*this, pp1);
MakePolyPoly(a2, pp2);
c.AddPaths(pp1, ptSubject, true);
c.AddPaths(pp2, ptClip, true);
TPolyPolygon solution;
c.Execute(ctIntersection, solution);
SetFromResult(*this, solution);
}
void CArea::Union(const CArea& a2)
{
Clipper c;
TPolyPolygon pp1, pp2;
MakePolyPoly(*this, pp1);
MakePolyPoly(a2, pp2);
c.AddPaths(pp1, ptSubject, true);
c.AddPaths(pp2, ptClip, true);
TPolyPolygon solution;
c.Execute(ctUnion, solution);
SetFromResult(*this, solution);
}
void CArea::Xor(const CArea& a2)
{
Clipper c;
TPolyPolygon pp1, pp2;
MakePolyPoly(*this, pp1);
MakePolyPoly(a2, pp2);
c.AddPaths(pp1, ptSubject, true);
c.AddPaths(pp2, ptClip, true);
TPolyPolygon solution;
c.Execute(ctXor, solution);
SetFromResult(*this, solution);
}
void CArea::Offset(double inwards_value)
{
TPolyPolygon pp, pp2;
MakePolyPoly(*this, pp, false);
OffsetWithLoops(pp, pp2, inwards_value * m_units);
SetFromResult(*this, pp2, false);
this->Reorder();
}
void CArea::Thicken(double value)
{
TPolyPolygon pp;
OffsetSpansWithObrounds(*this, pp, value * m_units);
SetFromResult(*this, pp, false);
this->Reorder();
}
void UnFitArcs(CCurve &curve)
{
pts_for_AddVertex.clear();
const CVertex* prev_vertex = NULL;
for(std::list<CVertex>::const_iterator It2 = curve.m_vertices.begin(); It2 != curve.m_vertices.end(); It2++)
{
const CVertex& vertex = *It2;
AddVertex(vertex, prev_vertex);
prev_vertex = &vertex;
}
curve.m_vertices.clear();
for(std::list<DoubleAreaPoint>::iterator It = pts_for_AddVertex.begin(); It != pts_for_AddVertex.end(); It++)
{
DoubleAreaPoint &pt = *It;
CVertex vertex(0, Point(pt.X / CArea::m_units, pt.Y / CArea::m_units), Point(0.0, 0.0));
curve.m_vertices.push_back(vertex);
}
}