Fixed reduction of (elim ==)

Fixed eliminator reduction, at least for the == type. Code currently
does the minimum required to make #23 work, but may have introduced bugs
in the process.
This commit is contained in:
William J. Bowman 2015-09-26 00:57:36 -04:00
parent 473394ccc1
commit 024f4e188e
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A
2 changed files with 42 additions and 9 deletions

View File

@ -313,7 +313,7 @@
(Σ (in-hole E (in-hole Θ_r (in-hole Θ_i e_mi)))) (Σ (in-hole E (in-hole Θ_r (in-hole Θ_i e_mi))))
#| #|
| The elim form must appear applied like so: | The elim form must appear applied like so:
| (elim x_D U e_P m_0 ... m_i m_j ... m_n p ... (c_i p ... a ...)) | (elim x_D U e_P m_0 ... m_i m_j ... m_n p ... (c_i a ...))
| |
| Where: | Where:
| x_D is the inductive being eliminated | x_D is the inductive being eliminated
@ -331,10 +331,7 @@
;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other ;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other
;; arguments. ;; arguments.
(judgment-holds (_parameters-of Σ x_D Ξ)) (judgment-holds (_parameters-of Σ x_D Ξ))
(judgment-holds (telescope-types Σ Θ_p Ξ)) (judgment-holds (type-infer Σ (in-hole (Θ_p (in-hole Θ_i x_ci)) e_P) t))
;; Ensure the constructor x_ci is applied to Θ_p first, then some arguments Θ_a
(where (in-hole Θ_a Θ_p)
Θ_i)
;; Ensure x_ci is actually a constructor for x_D ;; Ensure x_ci is actually a constructor for x_D
(where ((x_c* : t_c*) ...) (where ((x_c* : t_c*) ...)
(constructors-for Σ x_D)) (constructors-for Σ x_D))
@ -346,7 +343,7 @@
;; Find the method for constructor x_ci, relying on the order of the arguments. ;; Find the method for constructor x_ci, relying on the order of the arguments.
(where e_mi (method-lookup Σ x_D x_ci Θ_m)) (where e_mi (method-lookup Σ x_D x_ci Θ_m))
;; Generate the inductive recursion ;; Generate the inductive recursion
(where Θ_r (elim-recur x_D U e_P Θ_m Θ_m Θ_i (x_c* ...))) (where Θ_r (elim-recur x_D U e_P (in-hole Θ_p Θ_m) Θ_m Θ_i (x_c* ...)))
-->elim))) -->elim)))
(define-metafunction cic-redL (define-metafunction cic-redL
@ -1105,7 +1102,32 @@
(term false)) (term false))
;; == tests ;; == tests
(define Σ= (term (,Σ (== : (Π (A : Type) (Π (a : A) (Π (b : A) Type))) (define Σ= (term (,Σ (== : (Π (A : (Unv 0)) (Π (a : A) (Π (b : A) (Unv 0))))
((refl : (Π (A : Type) (a : A) (== A a a)))))))) ((refl : (Π (A : (Unv 0)) (Π (a : A) (((== A) a) a)))))))))
(check-true (Σ? Σ=))
) (define refl-elim
(term ((((((((elim ==) (Unv 0)) (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((==
A1)
x1)
y1))
nat)))))
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true))))
(check-holds
(type-check ,Σ= ,refl-elim nat))
(check-true
(redex-match?
cic-redL
(Σ (in-hole E (in-hole Θ (((elim x_D) U) e_P))))
(term (,Σ= ,refl-elim))))
(check-true
(redex-match?
cic-redL
(in-hole (Θ_p (in-hole Θ_i x_ci)) Θ_m)
(term (((((hole
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true)))))
(check-holds
(_parameters-of ,Σ= == (Π (A : Type) (Π (x : A) hole))))
(check-equal?
(term (reduce ,Σ= ,refl-elim))
(term zero)))

View File

@ -84,3 +84,14 @@
(data == : (forall* (A : Type) (x : A) (-> A Type)) (data == : (forall* (A : Type) (x : A) (-> A Type))
(refl : (forall* (A : Type) (x : A) (== A x x)))) (refl : (forall* (A : Type) (x : A) (== A x x))))
(module+ test
(require rackunit "bool.rkt" "nat.rkt")
(check-equal?
(elim == Type (λ* (A : Type) (x : A) (y : A) (p : (== A x y)) Nat)
(λ* (A : Type) (x : A) z)
Bool
true
true
(refl Bool true))
z))