fresh-x when generating names; α-equiv testing

* This commit breaks something, not sure why
* Changed all uses of (where .... ,(variable-not-in )) to use (fresh-x)
  instead.
* Defined check-equiv for testing modulo α-equivalence
* Changed many  check-equal? to check-equiv?. Remaining require
  splitting into separate tests, e.g., checking that judgment-form
  returns exactly 1 argument that is check-equiv? ...
This commit is contained in:
William J. Bowman 2015-09-30 16:34:55 -04:00
parent e08d006aba
commit 0647b19ee6
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A

View File

@ -182,8 +182,16 @@
[(α-equivalent e_0 e_2)
(α-equivalent e_1 e_3)
----------------- "α-app"
(α-equivalent (e_0 e_1) (e_2 e_3))])
(α-equivalent (e_0 e_1) (e_2 e_3))]
[(α-equivalent e_0 e_2)
(α-equivalent e_1 e_3)
----------------- "α-elim"
(α-equivalent (elim e_0 e_1) (elim e_2 e_3))])
(module+ test
;; NB: Hack to allow checking contexts without explicitly defining on contexts
(define-syntax-rule (check-equiv? e1 e2)
(check (lambda (x y) (term (α-equivalent (in-hole ,x Type) (in-hole ,y Type)))) e1 e2))
(check-holds (α-equivalent x x))
(check-not-holds (α-equivalent x y))
(check-holds (α-equivalent (λ (x : A) x) (λ (y : A) y))))
@ -214,11 +222,7 @@
[(subst (any (x_0 : t_0) t_1) x t)
(any (x_new : (subst (subst-vars (x_0 x_new) t_0) x t))
(subst (subst-vars (x_0 x_new) t_1) x t))
;; TODO: Use "fresh-x" meta-function
(where x_new
,(variable-not-in
(term (x_0 t_0 x t t_1))
(term x_0)))]
(where x_new (fresh-x x_0 t_0 x t t_1))]
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))]
[(subst (elim e_0 e_1) x t) (elim (subst e_0 x t) (subst e_1 x t))])
(module+ test
@ -456,7 +460,7 @@
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s zero)))))
(check-equal?
(check-equiv?
(term (step ,Σ (step ,Σ
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
(s zero))
@ -465,7 +469,6 @@
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s zero))))))
(term
;; TODO: Should be checking equivalence, not equal with DYI alpha equivalence
((λ (ih-x1 : nat) (s ih-x1))
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
zero)
@ -626,12 +629,11 @@
(define-metafunction tt-redL
hypotheses-for : x t Φ -> Φ
[(hypotheses-for x_D t_P hole) hole]
[(hypotheses-for x_D t_P (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))
[(hypotheses-for x_D t_P (name any_0 (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)))
;; TODO: Thread through Σ for reduce
(Π (x_h : (in-hole Φ (reduce ((in-hole Θ t_P) (apply-telescope x Φ)))))
(hypotheses-for x_D t_P Φ_1))
;; NB: Lol hygiene
(where x_h ,(string->symbol (format "~a-~a" 'ih (term x))))])
(where x_h (fresh-x x_D t_P any_0))])
;; Returns the inductive arguments to a constructor for the
;; inducitvely defined type x_D, where the telescope Φ are the
@ -650,8 +652,8 @@
(define-metafunction tt-redL
methods-for : x t ((x : t) ...) -> Ξ
[(methods-for x_D t_P ()) hole]
[(methods-for x_D t_P ((x_ci : (in-hole Φ (in-hole Θ x_D)))
(x_c : t) ...))
[(methods-for x_D t_P (name any_0 ((x_ci : (in-hole Φ (in-hole Θ x_D)))
(x_c : t) ...)))
(Π (x_mi : (in-hole Φ (in-hole Φ_h
;; NB: Manually reducing types because no conversion
;; NB: rule
@ -661,19 +663,18 @@
(reduce ((in-hole Θ t_P) (apply-telescope x_ci Φ))))))
(methods-for x_D t_P ((x_c : t) ...)))
(where Φ_h (hypotheses-for x_D t_P (inductive-args x_D Φ)))
;; NB: Lol hygiene
(where x_mi ,(string->symbol (format "~a-~a" 'm (term x_ci))))])
(where x_mi (fresh-x x_D t_P any_0))])
(module+ test
(check-equal?
(check-equiv?
(term (methods-for nat P ((zero : nat) (s : (Π (x : nat) nat)))))
(term (Π (m-zero : (P zero))
(Π (m-s : (Π (x : nat) (Π (ih-x : (P x)) (P (s x)))))
hole))))
(check-equal?
(check-equiv?
(term (methods-for nat (λ (x : nat) nat) ((zero : nat) (s : (Π (x : nat) nat)))))
(term (Π (m-zero : nat) (Π (m-s : (Π (x : nat) (Π (ih-x : nat) nat)))
hole))))
(check-equal?
(check-equiv?
(term (methods-for and
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
((conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B)
@ -863,7 +864,7 @@
(check-holds (type-infer ,Σtruth T (in-hole Θ_ai truth)))
(check-holds (type-infer ,Σtruth (λ (x : truth) (Unv 1))
(in-hole Ξ (Π (x : (in-hole Θ truth)) U))))
(check-equal?
(check-equiv?
(term (methods-for truth (λ (x : truth) (Unv 1)) ((T : truth))))
(term (Π (m-T : (Unv 1)) hole)))
(check-holds (telescope-types ,Σtruth (hole (Unv 0))