Cleaned up eliminator reduction and typing

This commit is contained in:
William J. Bowman 2015-10-02 17:02:48 -04:00
parent fd455b7a07
commit 0d110dffaf
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A

View File

@ -535,13 +535,48 @@
;; The types of the methods for this inductive.
(where Ξ_m (Σ-methods-telescope Σ x_D x_P))])
;; TODO: This might belong in the next section, since it's related to evaluation
;; Generate recursive applications of the eliminator for each inductive argument of type x_D.
;; In more detaill, given motive t_P, parameters Θ_p, methods Θ_m, and arguments Θ_i to constructor
;; x_ci for x_D, for each inductively smaller term t_i of type (in-hole Θ_p x_D) inside Θ_i,
;; generate: (elim x_D U t_P Θ_m ... Θ_p ... t_i)
(define-metafunction tt-ctxtL
Σ-inductive-elim : Σ x U t Θ Θ Θ -> Θ
[(Σ-inductive-elim Σ x_D U t_P Θ_p Θ_m (in-hole Θ_i (hole (name t_i (in-hole Θ_r x_ci)))))
((Σ-inductive-elim Σ x_D U t_P Θ_p Θ_m Θ_i)
(in-hole ((in-hole Θ_p Θ_m) t_i) ((elim x_D U) t_P)))
(side-condition (memq (term x_ci) (term (Σ-ref-constructors Σ x_D))))]
[(Σ-inductive-elim Σ x_D U t_P Θ_p Θ_m Θ_nr) hole])
;; TODO: Insufficient tests, no tests of inductives with parameters, or complex induction.
(module+ test
(check-true
(redex-match? tt-ctxtL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero))))
(check-equiv?
(term (Σ-inductive-elim ,Σ nat Type (λ (x : nat) nat) hole
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(hole zero)))
(term (hole (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
zero))))
(check-equiv?
(term (Σ-inductive-elim ,Σ nat Type (λ (x : nat) nat) hole
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(hole (s zero))))
(term (hole (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(s zero))))))
;;; ------------------------------------------------------------------------
;;; Dynamic semantics
;;; The majority of this section is dedicated to evaluation of (elim x U), the eliminator for the
;;; inductively defined type x with a motive whose result is in universe U
(define-extended-language tt-redL tt-ctxtL
;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim.
;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim. However,
;; determining whether or not it is partially applied cannot be done with the grammar alone.
(v ::= x U (Π (x : t) t) (λ (x : t) t) (elim x U) (in-hole Θv x) (in-hole Θv (elim x U)))
(Θv ::= hole (Θv v))
;; call-by-value, plus reduce under Π (helps with typing checking)
@ -556,43 +591,6 @@
(check-true (v? (term (refl Nat))))
(check-true (v? (term ((refl Nat) z)))))
;; Create the recursive applications of elim to the recursive
;; arguments of an inductive constructor.
;; TODO: Poorly documented, and poorly tested.
(define-metafunction tt-redL
elim-recur : x U e Θ Θ Θ (x ...) -> Θ
[(elim-recur x_D U e_P Θ
(in-hole Θ_m (hole e_mi))
(in-hole Θ_i (hole (in-hole Θ_r x_ci)))
(x_c0 ... x_ci x_c1 ...))
((elim-recur x_D U e_P Θ Θ_m Θ_i (x_c0 ... x_ci x_c1 ...))
(in-hole (Θ (in-hole Θ_r x_ci)) ((elim x_D U) e_P)))]
[(elim-recur x_D U e_P Θ Θ_i Θ_nr (x ...)) hole])
(module+ test
(check-true
(redex-match? tt-redL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero))))
(check-equiv?
(term (elim-recur nat Type (λ (x : nat) nat)
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(hole zero)
(zero s)))
(term (hole (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
zero))))
(check-equiv?
(term (elim-recur nat Type (λ (x : nat) nat)
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(hole (s zero))
(zero s)))
(term (hole (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(s zero))))))
(define tt-->
(reduction-relation tt-redL
(--> (Σ (in-hole E ((any (x : t_0) t_1) t_2)))
@ -615,7 +613,8 @@
| Unfortunately, Θ contexts turn all this inside out:
| TODO: Write better abstractions for this notation
|#
;; Split Θv into its components
;; Split Θv into its components: the paramters Θv_P for x_D, the methods Θv_m for x_D, and
;; the discriminant: the constructor x_ci applied to its argument Θv_i
(where (in-hole (Θv_p (in-hole Θv_i x_ci)) Θv_m) Θv)
;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other
;; arguments.
@ -629,7 +628,7 @@
;; Find the method for constructor x_ci, relying on the order of the arguments.
(where v_mi (Θ-ref Θv_m (Σ-constructor-index Σ x_D x_ci)))
;; Generate the inductive recursion
(where Θ_r (elim-recur x_D U v_P (in-hole Θv_p Θv_m) Θv_m Θv_i (x_c* ...)))
(where Θ_r (Σ-inductive-elim Σ x_D U v_P Θv_p Θv_m Θv_i))
-->elim)))
(define-metafunction tt-redL
@ -644,8 +643,9 @@
e_r
(where (_ e_r)
,(let ([r (apply-reduction-relation* tt--> (term (Σ e)) #:cache-all? #t)])
;; Efficient check for (= (length r) 1)
(unless (null? (cdr r))
(error "Church-rosser broken" r))
(error "Church-Rosser broken" r))
(car r)))])
;; TODO: Move equivalence up here, and use in these tests.
@ -790,14 +790,13 @@
(type-infer Σ t_D U_D)
(type-infer Σ ( x_D : t_D) t_c U_c) ...
;; NB: Ugh this should be possible with pattern matching alone ....
(side-condition ,(map (curry equal? (term Ξ_D)) (term (Ξ_D* ...))))
(side-condition ,(map (curry equal? (term x_D)) (term (x_D* ...))))
(side-condition (positive t_D (t_c ...)))
----------------- "WF-Inductive"
(wf (Σ (x_D : (name t_D (in-hole Ξ_D t))
(wf (Σ (x_D : t_D
;; Checks that a constructor for x actually produces an x, i.e., that
;; the constructor is well-formed.
((x_c : (name t_c (in-hole Ξ_D* (in-hole Φ (in-hole Θ x_D*))))) ...))) )])
((x_c : (name t_c (in-hole Ξ (in-hole Θ x_D*)))) ...))) )])
(module+ test
(check-true (judgment-holds (wf ,Σ0 )))
@ -885,6 +884,8 @@
[(type-infer Σ Γ e_0 (Π (x_0 : t_0) t_1))
(type-check Σ Γ e_1 t_0)
;; TODO: Not sure why this explicit reduction is necessary, since type-check should check modulo
;; equivalence.
(where t_3 (reduce Σ ((Π (x_0 : t_0) t_1) e_1)))
----------------- "DTR-Application"
(type-infer Σ Γ (e_0 e_1) t_3)]
@ -894,11 +895,10 @@
----------------- "DTR-Abstraction"
(type-infer Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
;; NB: Sort of redundant since we will actually infer this exact type for x_D
;; TODO: Do we want to check the Σ-elim-telescope is well-formed?
[(type-check Σ Γ x_D (Σ-ref-type Σ x_D))
[(where t (Σ-elim-type Σ x_D U))
(type-infer Σ Γ t U_e)
----------------- "DTR-Elim_D"
(type-infer Σ Γ (elim x_D U) (Σ-elim-type Σ x_D U))])
(type-infer Σ Γ (elim x_D U) t)])
(define-judgment-form tt-typingL
#:mode (type-check I I I I)
@ -908,6 +908,7 @@
(equivalent Σ t t_0)
----------------- "DTR-Check"
(type-check Σ Γ e t)])
(module+ test
(check-holds (type-infer (Unv 0) (Unv 1)))
(check-holds (type-infer ( x : (Unv 0)) (Unv 0) (Unv 1)))