Removed methods-for

Finish reorganization of method type metafunctions
This commit is contained in:
William J. Bowman 2015-10-01 14:42:30 -04:00
parent 47460cf916
commit 26e5e40ec6
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A

View File

@ -332,7 +332,7 @@
#| TODO:
| This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true
| that (equivalent t (Ξ-apply Ξ t))?
| Maybe not. t is a lambda whose type is equivalent to (Ξ-apply Ξ t)?
| Maybe not. t is a lambda whose type is equivalent to (Ξ-apply Ξ t)? Yes.
|#
(define-metafunction tt-ctxtL
Ξ-apply : Ξ t -> t
@ -436,6 +436,8 @@
hypotheses-loop : x t Φ -> Φ
[(hypotheses-loop x_D t_P hole) hole]
[(hypotheses-loop x_D t_P (name any_0 (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)))
;; TODO: Instead of this nonsense, it might be simpler to pass in the type of t_P and use that
;; as/to compute the type of the hypothesis.
(Π (x_h : (in-hole Φ ((in-hole Θ t_P) (Ξ-apply Φ x))))
(hypotheses-loop x_D t_P Φ_1))
(where x_h ,(variable-not-in (term (x_D t_P any_0)) 'x-ih))])
@ -470,50 +472,37 @@
[(Σ-methods-telescope Σ x_D t_P)
(method-loop Σ x_D t_P (Σ-ref-constructors Σ x_D))])
(module+ test
;; NB: Test case not correct yet, needs inductive case
#;(check-equiv?
(term (Σ-methods-telescope ,Σ nat (λ (x : nat) nat)))
(term (Π (x : nat) hole))))
;; Returns the methods required for eliminating the inductively defined type x_D, whose constructors
;; are ((x_ci : t_ci) ...), with motive t_P.
(define-metafunction tt-ctxtL
methods-for : x t ((x : t) ...) -> Ξ
[(methods-for x_D t_P ()) hole]
[(methods-for x_D t_P (name any_0 ((x_ci : (in-hole Φ (in-hole Θ x_D)))
(x_c : t) ...)))
(Π (x_mi : (in-hole Φ (in-hole Φ_h ((in-hole Θ t_P) (Ξ-apply Φ x_ci)))))
(methods-for x_D t_P ((x_c : t) ...)))
(where Φ_h (hypotheses-loop x_D t_P (inductive-loop x_D Φ)))
(where x_mi ,(variable-not-in (term (x_D t_P any_0)) 'x-mi))])
(module+ test
(check-equiv?
(term (methods-for nat P ((zero : nat) (s : (Π (x : nat) nat)))))
(term (Σ-methods-telescope ,Σ nat (λ (x : nat) nat)))
(term (Π (m-zero : ((λ (x : nat) nat) zero))
(Π (m-s : (Π (x : nat) (Π (x-ih : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x))))) hole))))
(check-equiv?
(term (Σ-methods-telescope ,Σ nat P))
(term (Π (m-zero : (P zero))
(Π (m-s : (Π (x : nat) (Π (ih-x : (P x)) (P (s x)))))
hole))))
;; NB: does not pass because of removed reduction from methods-for
;; TODO: After reduce, check that this is equivalent to the expected this.
(check-equiv?
(term (methods-for nat (λ (x : nat) nat) ((zero : nat) (s : (Π (x : nat) nat)))))
(term (Π (m-zero : nat) (Π (m-s : (Π (x : nat) (Π (ih-x : nat) nat)))
hole))))
;; NB: does not pass because of removed reduction from methods-for
(term (Σ-methods-telescope ,Σ nat (λ (x : nat) nat)))
(term (Π (m-zero : ((λ (x : nat) nat) zero))
(Π (m-s : (Π (x : nat) (Π (ih-x : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x)))))
hole))))
;; TODO: After reduce, check that this is equivalent to the expected this.
(check-equiv?
(term (methods-for and
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
((conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B)
((and A) B)))))))))
(term (Π (m-conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B) true)))))
(term (Σ-methods-telescope ,Σ4 and (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))))
(term (Π (m-conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B)
((((λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
A)
B)
((((conj A) B) a) b)))))))
hole)))
(check-true (x? (term false)))
(check-true (Ξ? (term hole)))
(check-true (t? (term (λ (y : false) (Π (x : Type) x)))))
(check-true (redex-match? ttL ((x : t) ...) (term ())))
(check-equiv?
(term (methods-for false (λ (y : false) (Π (x : Type) x))
()))
(term (Σ-methods-telescope ,sigma false (λ (y : false) (Π (x : Type) x))))
(term hole)))
;;; ------------------------------------------------------------------------
@ -851,6 +840,7 @@
(check-true
(redex-match? tt-redL (in-hole Θ (hole e))
(term ((hole zero) (λ (x : nat) x)))))
;; TODO: Why should this be true? (hole zero) seems to simple.
(check-holds
(telescope-types ,Σ (hole zero)
(Σ-methods-telescope ,Σ nat (λ (x : nat) nat))))
@ -986,14 +976,13 @@
(check-holds (type-infer ,Σtruth (λ (x : truth) (Unv 1))
(in-hole Ξ (Π (x : (in-hole Θ truth)) U))))
;; NB: Does not pass due to removed reduction in methods-for
;; TODO: ensure equivalent to expected result
(check-equiv?
(term (methods-for truth (λ (x : truth) (Unv 1)) ((T : truth))))
(term (Π (m-T : (Unv 1)) hole)))
(term (Σ-methods-telescope ,Σtruth truth (λ (x : truth) (Unv 1))))
(term (Π (m-T : ((λ (x : truth) (Unv 1)) T)) hole)))
(check-holds (telescope-types ,Σtruth (hole (Unv 0))
(methods-for truth
(λ (x : truth) (Unv 1))
((T : truth)))))
(Σ-methods-telescope ,Σtruth truth
(λ (x : truth) (Unv 1)))))
(check-holds (type-infer ,Σtruth (elim truth Type) t))
(check-holds (type-check ( (truth : (Unv 0) ((T : truth))))