More work on organizing method types

This commit is contained in:
William J. Bowman 2015-10-01 13:09:28 -04:00
parent e69920907d
commit 47460cf916
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A

View File

@ -104,84 +104,6 @@
())))))
(check-true (Σ? sigma)))
;;; ------------------------------------------------------------------------
;;; Primitive Operations on signatures Σ (those operations that do not require contexts)
;;; TODO: Might be worth maintaining the above bijection between Σ and maps for performance reasons
;; NB: Depends on clause order
(define-metafunction ttL
Σ-ref-type : Σ x -> t or #f
[(Σ-ref-type x) #f]
[(Σ-ref-type (Σ (x : t any)) x) t]
[(Σ-ref-type (Σ (x_0 : t_0 ((x_1 : t_1) ... (x : t) (x_2 : t_2) ...))) x) t]
[(Σ-ref-type (Σ (x_0 : t_0 any)) x) (Σ-ref-type Σ x)])
(define-metafunction ttL
Σ-union : Σ Σ -> Σ
[(Σ-union Σ ) Σ]
[(Σ-union Σ_2 (Σ_1 (x : t any)))
((Σ-union Σ_2 Σ_1) (x : t any))])
;; Returns the inductively defined type that x constructs
;; NB: Depends on clause order
(define-metafunction ttL
Σ-key-by-constructor : Σ x -> x
[(Σ-key-by-constructor (Σ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...))) x_c)
x]
[(Σ-key-by-constructor (Σ (x_1 : t_1 any)) x)
(Σ-key-by-constructor Σ x)])
(module+ test
(check-equal?
(term (Σ-key-by-constructor ,Σ zero))
(term nat))
(check-equal?
(term (Σ-key-by-constructor ,Σ s))
(term nat)))
;; Returns the constructor map for the inductively defined type x_D in the signature Σ
(define-metafunction ttL
Σ-ref-constructor-map : Σ x -> ((x : t) ...) or #f
;; NB: Depends on clause order
[(Σ-ref-constructor-map x_D) #f]
[(Σ-ref-constructor-map (Σ (x_D : t_D any)) x_D)
any]
[(Σ-ref-constructor-map (Σ (x_1 : t_1 any)) x_D)
(Σ-ref-constructor-map Σ x_D)])
(module+ test
(check-equal?
(term (Σ-ref-constructor-map ,Σ nat))
(term ((zero : nat) (s : (Π (x : nat) nat)))))
(check-equal?
(term (Σ-ref-constructor-map ,sigma false))
(term ())))
;; Get the list of constructors for the inducitvely defined type x_D
;; NB: Depends on clause order
(define-metafunction ttL
Σ-ref-constructors : Σ x -> (x ...) or #f
[(Σ-ref-constructors x_D) #f]
[(Σ-ref-constructors (Σ (x_D : t_D ((x : t) ...))) x_D)
(x ...)]
[(Σ-ref-constructors (Σ (x_1 : t_1 any)) x_D)
(Σ-ref-constructors Σ x_D)])
;; NB: Depends on clause order
(define-metafunction ttL
sequence-index-of : any (any ...) -> natural
[(sequence-index-of any_0 (any_0 any ...))
0]
[(sequence-index-of any_0 (any_1 any ...))
,(add1 (term (sequence-index-of any_0 (any ...))))])
;; Get the index of the constructor x_ci in the list of constructors for x_D
(define-metafunction ttL
Σ-constructor-index : Σ x x -> natural
[(Σ-constructor-index Σ x_D x_ci)
(sequence-index-of x_ci (Σ-ref-constructors Σ x_D))])
;;; ------------------------------------------------------------------------
;;; Universe typing
@ -286,6 +208,91 @@
[(subst-all t (x_0 x ...) (e_0 e ...))
(subst-all (subst t x_0 e_0) (x ...) (e ...))])
;;; ------------------------------------------------------------------------
;;; Primitive Operations on signatures Σ (those operations that do not require contexts)
;;; TODO: Might be worth maintaining the above bijection between Σ and maps for performance reasons
;; TODO: This is doing too many things
;; NB: Depends on clause order
(define-metafunction ttL
Σ-ref-type : Σ x -> t or #f
[(Σ-ref-type x) #f]
[(Σ-ref-type (Σ (x : t any)) x) t]
[(Σ-ref-type (Σ (x_0 : t_0 ((x_1 : t_1) ... (x : t) (x_2 : t_2) ...))) x) t]
[(Σ-ref-type (Σ (x_0 : t_0 any)) x) (Σ-ref-type Σ x)])
(define-metafunction ttL
Σ-union : Σ Σ -> Σ
[(Σ-union Σ ) Σ]
[(Σ-union Σ_2 (Σ_1 (x : t any)))
((Σ-union Σ_2 Σ_1) (x : t any))])
;; Returns the inductively defined type that x constructs
;; NB: Depends on clause order
(define-metafunction ttL
Σ-key-by-constructor : Σ x -> x
[(Σ-key-by-constructor (Σ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...))) x_c)
x]
[(Σ-key-by-constructor (Σ (x_1 : t_1 any)) x)
(Σ-key-by-constructor Σ x)])
(module+ test
(check-equal?
(term (Σ-key-by-constructor ,Σ zero))
(term nat))
(check-equal?
(term (Σ-key-by-constructor ,Σ s))
(term nat)))
;; Returns the constructor map for the inductively defined type x_D in the signature Σ
(define-metafunction ttL
Σ-ref-constructor-map : Σ x -> ((x : t) ...) or #f
;; NB: Depends on clause order
[(Σ-ref-constructor-map x_D) #f]
[(Σ-ref-constructor-map (Σ (x_D : t_D any)) x_D)
any]
[(Σ-ref-constructor-map (Σ (x_1 : t_1 any)) x_D)
(Σ-ref-constructor-map Σ x_D)])
(module+ test
(check-equal?
(term (Σ-ref-constructor-map ,Σ nat))
(term ((zero : nat) (s : (Π (x : nat) nat)))))
(check-equal?
(term (Σ-ref-constructor-map ,sigma false))
(term ())))
;; TODO: Should not use Σ-ref-type
(define-metafunction ttL
Σ-ref-constructor-type : Σ x x -> t
[(Σ-ref-constructor-type Σ x_D x_ci)
(Σ-ref-type Σ x_ci)])
;; Get the list of constructors for the inducitvely defined type x_D
;; NB: Depends on clause order
(define-metafunction ttL
Σ-ref-constructors : Σ x -> (x ...) or #f
[(Σ-ref-constructors x_D) #f]
[(Σ-ref-constructors (Σ (x_D : t_D ((x : t) ...))) x_D)
(x ...)]
[(Σ-ref-constructors (Σ (x_1 : t_1 any)) x_D)
(Σ-ref-constructors Σ x_D)])
;; NB: Depends on clause order
(define-metafunction ttL
sequence-index-of : any (any ...) -> natural
[(sequence-index-of any_0 (any_0 any ...))
0]
[(sequence-index-of any_0 (any_1 any ...))
,(add1 (term (sequence-index-of any_0 (any ...))))])
;; Get the index of the constructor x_ci in the list of constructors for x_D
(define-metafunction ttL
Σ-constructor-index : Σ x x -> natural
[(Σ-constructor-index Σ x_D x_ci)
(sequence-index-of x_ci (Σ-ref-constructors Σ x_D))])
;;; ------------------------------------------------------------------------
;;; Operations that involve contexts.
@ -322,13 +329,30 @@
;; Applies the term t to the telescope Ξ.
;; TODO: Test
;; TODO: This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true
;; that (equivalent t (Ξ-apply Ξ t))
#| TODO:
| This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true
| that (equivalent t (Ξ-apply Ξ t))?
| Maybe not. t is a lambda whose type is equivalent to (Ξ-apply Ξ t)?
|#
(define-metafunction tt-ctxtL
Ξ-apply : Ξ t -> t
[(Ξ-apply hole t) t]
[(Ξ-apply (Π (x : t) Ξ) t_0) (Ξ-apply Ξ (t_0 x))])
;; Compose multiple telescopes into a single telescope:
(define-metafunction tt-ctxtL
Ξ-compose : Ξ Ξ ... -> Ξ
[(Ξ-compose Ξ) Ξ]
[(Ξ-compose Ξ_0 Ξ_1 Ξ_rest ...)
(Ξ-compose (in-hole Ξ_0 Ξ_1) Ξ_rest ...)])
(module+ test
(check-equiv?
(term (Ξ-compose
(Π (x : t_0) (Π (y : t_1) hole))
(Π (z : t_2) (Π (a : t_3) hole))))
(term (Π (x : t_0) (Π (y : t_1) (Π (z : t_2) (Π (a : t_3) hole)))))))
;; Compute the number of arguments in a Ξ
(define-metafunction tt-ctxtL
Ξ-length : Ξ -> natural
@ -358,6 +382,23 @@
;; Returns the inductive arguments to the constructor x_ci of the
;; inducitvely defined type x_D
;; Returns the telescope of the arguments for the constructor x_ci of the inductively defined type x_D
(define-metafunction tt-ctxtL
Σ-constructor-telescope : Σ x x -> Ξ
[(Σ-constructor-telescope Σ x_D x_ci)
Ξ
(where (in-hole Ξ (in-hole Θ x_D))
(Σ-ref-constructor-type Σ x_D x_ci))])
;; Returns the parameter arguments as an apply context of the constructor x_ci of the inductively
;; defined type x_D
(define-metafunction tt-ctxtL
Σ-constructor-parameters : Σ x x -> Θ
[(Σ-constructor-parameters Σ x_D x_ci)
Θ
(where (in-hole Ξ (in-hole Θ x_D))
(Σ-ref-constructor-type Σ x_D x_ci))])
;; Inner loop for Σ-constructor-noninductive-telescope
(define-metafunction tt-ctxtL
noninductive-loop : x Φ -> Φ
@ -371,7 +412,7 @@
(define-metafunction tt-ctxtL
Σ-constructor-noninductive-telescope : Σ x x -> Ξ
[(Σ-constructor-noninductive-telescope Σ x_D x_ci)
(noninductive-loop (Σ-constructor-telescope))])
(noninductive-loop x_D (Σ-constructor-telescope Σ x_D x_ci))])
;; Inner loop for Σ-constructor-inductive-telescope
;; NB: Depends on clause order
@ -387,7 +428,7 @@
(define-metafunction tt-ctxtL
Σ-constructor-inductive-telescope : Σ x x -> Ξ
[(Σ-constructor-inductive-telescope Σ x_D x_ci)
(inductive-loop (Σ-constructor-telescope))])
(inductive-loop x_D (Σ-constructor-telescope Σ x_D x_ci))])
;; Returns the inductive hypotheses required for eliminating the inductively defined type x_D with
;; motive t_P, where the telescope Φ are the inductive arguments to a constructor for x_D
@ -406,6 +447,35 @@
[(Σ-constructor-inductive-hypotheses Σ x_D x_ci t_P)
(hypotheses-loop x_D t_P (Σ-constructor-inductive-telescope Σ x_D x_ci))])
(define-metafunction tt-ctxtL
Σ-constructor-method-telescope : Σ x x t -> Ξ
[(Σ-constructor-method-telescope Σ x_D x_ci t_P)
(Π (x_mi : (in-hole Ξ_a (in-hole Ξ_h ((in-hole Θ_p t_P) (Ξ-apply Ξ_a x_ci)))))
hole)
(where Θ_p (Σ-constructor-parameters Σ x_D x_ci))
(where Ξ_a (Σ-constructor-telescope Σ x_D x_ci))
(where Ξ_h (Σ-constructor-inductive-hypotheses Σ x_D x_ci t_P))
(where x_mi ,(variable-not-in (term (t_P Σ)) 'x-mi))])
;; fold Ξ-compose over map Σ-constructor-method-telescope over the list of constructors
(define-metafunction tt-ctxtL
method-loop : Σ x t (x ...) -> Ξ
[(method-loop Σ x_D t_P ()) hole]
[(method-loop Σ x_D t_P (x_0 x_rest ...))
(Ξ-compose (Σ-constructor-method-telescope Σ x_D x_0 t_P) (method-loop Σ x_D t_P (x_rest ...)))])
;; Returns the telescope of all methods required to eliminate the type x_D with motive t_P
(define-metafunction tt-ctxtL
Σ-methods-telescope : Σ x t -> Ξ
[(Σ-methods-telescope Σ x_D t_P)
(method-loop Σ x_D t_P (Σ-ref-constructors Σ x_D))])
(module+ test
;; NB: Test case not correct yet, needs inductive case
#;(check-equiv?
(term (Σ-methods-telescope ,Σ nat (λ (x : nat) nat)))
(term (Π (x : nat) hole))))
;; Returns the methods required for eliminating the inductively defined type x_D, whose constructors
;; are ((x_ci : t_ci) ...), with motive t_P.
(define-metafunction tt-ctxtL
@ -783,9 +853,7 @@
(term ((hole zero) (λ (x : nat) x)))))
(check-holds
(telescope-types ,Σ (hole zero)
(methods-for nat
(λ (x : nat) nat)
((zero : nat)))))
(Σ-methods-telescope ,Σ nat (λ (x : nat) nat))))
(check-holds
(type-check ,Σ (λ (x : nat) (λ (ih-x : nat) x))
(Π (x : nat) (Π (ih-x : nat) nat))))
@ -793,21 +861,17 @@
(telescope-types ,Σ
((hole zero)
(λ (x : nat) (λ (ih-x : nat) x)))
(methods-for nat
(λ (x : nat) nat)
(Σ-ref-constructor-map ,Σ nat))))
(Σ-methods-telescope ,Σ nat (λ (x : nat) nat))))
(check-holds
(telescope-types (,Σ4 (true : (Unv 0) ((tt : true))))
(hole (λ (A : (Unv 0)) (λ (B : (Unv 0))
(λ (a : A) (λ (b : B) tt)))))
(methods-for and
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
(Σ-ref-constructor-map ,Σ4 and))))
(Σ-methods-telescope ,Σ4 and
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true))))))
(check-holds
(telescope-types ,sigma ( x : false)
hole
(methods-for false (λ (y : false) (Π (x : Type) x))
()))))
(Σ-methods-telescope ,sigma false (λ (y : false) (Π (x : Type) x))))))
;; TODO: Bi-directional and inference?
;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
@ -858,7 +922,7 @@
;; A fresh name for the motive
(where x_P ,(variable-not-in (term (Σ Γ x_D Ξ Ξ_P*D x)) 'x-P))
;; The types of the methods for this inductive.
(where Ξ_m (methods-for x_D x_P (Σ-ref-constructor-map Σ x_D)))
(where Ξ_m (Σ-methods-telescope Σ x_D x_P))
----------------- "DTR-Elim_D"
(type-infer Σ Γ (elim x_D U)
;; The type of (elim x_D U) is something like: