More work on organizing method types
This commit is contained in:
parent
e69920907d
commit
47460cf916
|
@ -104,84 +104,6 @@
|
|||
())))))
|
||||
(check-true (Σ? sigma)))
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Primitive Operations on signatures Σ (those operations that do not require contexts)
|
||||
|
||||
;;; TODO: Might be worth maintaining the above bijection between Σ and maps for performance reasons
|
||||
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction ttL
|
||||
Σ-ref-type : Σ x -> t or #f
|
||||
[(Σ-ref-type ∅ x) #f]
|
||||
[(Σ-ref-type (Σ (x : t any)) x) t]
|
||||
[(Σ-ref-type (Σ (x_0 : t_0 ((x_1 : t_1) ... (x : t) (x_2 : t_2) ...))) x) t]
|
||||
[(Σ-ref-type (Σ (x_0 : t_0 any)) x) (Σ-ref-type Σ x)])
|
||||
|
||||
(define-metafunction ttL
|
||||
Σ-union : Σ Σ -> Σ
|
||||
[(Σ-union Σ ∅) Σ]
|
||||
[(Σ-union Σ_2 (Σ_1 (x : t any)))
|
||||
((Σ-union Σ_2 Σ_1) (x : t any))])
|
||||
|
||||
;; Returns the inductively defined type that x constructs
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction ttL
|
||||
Σ-key-by-constructor : Σ x -> x
|
||||
[(Σ-key-by-constructor (Σ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...))) x_c)
|
||||
x]
|
||||
[(Σ-key-by-constructor (Σ (x_1 : t_1 any)) x)
|
||||
(Σ-key-by-constructor Σ x)])
|
||||
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (Σ-key-by-constructor ,Σ zero))
|
||||
(term nat))
|
||||
(check-equal?
|
||||
(term (Σ-key-by-constructor ,Σ s))
|
||||
(term nat)))
|
||||
|
||||
;; Returns the constructor map for the inductively defined type x_D in the signature Σ
|
||||
(define-metafunction ttL
|
||||
Σ-ref-constructor-map : Σ x -> ((x : t) ...) or #f
|
||||
;; NB: Depends on clause order
|
||||
[(Σ-ref-constructor-map ∅ x_D) #f]
|
||||
[(Σ-ref-constructor-map (Σ (x_D : t_D any)) x_D)
|
||||
any]
|
||||
[(Σ-ref-constructor-map (Σ (x_1 : t_1 any)) x_D)
|
||||
(Σ-ref-constructor-map Σ x_D)])
|
||||
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (Σ-ref-constructor-map ,Σ nat))
|
||||
(term ((zero : nat) (s : (Π (x : nat) nat)))))
|
||||
(check-equal?
|
||||
(term (Σ-ref-constructor-map ,sigma false))
|
||||
(term ())))
|
||||
|
||||
;; Get the list of constructors for the inducitvely defined type x_D
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction ttL
|
||||
Σ-ref-constructors : Σ x -> (x ...) or #f
|
||||
[(Σ-ref-constructors ∅ x_D) #f]
|
||||
[(Σ-ref-constructors (Σ (x_D : t_D ((x : t) ...))) x_D)
|
||||
(x ...)]
|
||||
[(Σ-ref-constructors (Σ (x_1 : t_1 any)) x_D)
|
||||
(Σ-ref-constructors Σ x_D)])
|
||||
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction ttL
|
||||
sequence-index-of : any (any ...) -> natural
|
||||
[(sequence-index-of any_0 (any_0 any ...))
|
||||
0]
|
||||
[(sequence-index-of any_0 (any_1 any ...))
|
||||
,(add1 (term (sequence-index-of any_0 (any ...))))])
|
||||
|
||||
;; Get the index of the constructor x_ci in the list of constructors for x_D
|
||||
(define-metafunction ttL
|
||||
Σ-constructor-index : Σ x x -> natural
|
||||
[(Σ-constructor-index Σ x_D x_ci)
|
||||
(sequence-index-of x_ci (Σ-ref-constructors Σ x_D))])
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Universe typing
|
||||
|
||||
|
@ -286,6 +208,91 @@
|
|||
[(subst-all t (x_0 x ...) (e_0 e ...))
|
||||
(subst-all (subst t x_0 e_0) (x ...) (e ...))])
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Primitive Operations on signatures Σ (those operations that do not require contexts)
|
||||
|
||||
;;; TODO: Might be worth maintaining the above bijection between Σ and maps for performance reasons
|
||||
|
||||
;; TODO: This is doing too many things
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction ttL
|
||||
Σ-ref-type : Σ x -> t or #f
|
||||
[(Σ-ref-type ∅ x) #f]
|
||||
[(Σ-ref-type (Σ (x : t any)) x) t]
|
||||
[(Σ-ref-type (Σ (x_0 : t_0 ((x_1 : t_1) ... (x : t) (x_2 : t_2) ...))) x) t]
|
||||
[(Σ-ref-type (Σ (x_0 : t_0 any)) x) (Σ-ref-type Σ x)])
|
||||
|
||||
(define-metafunction ttL
|
||||
Σ-union : Σ Σ -> Σ
|
||||
[(Σ-union Σ ∅) Σ]
|
||||
[(Σ-union Σ_2 (Σ_1 (x : t any)))
|
||||
((Σ-union Σ_2 Σ_1) (x : t any))])
|
||||
|
||||
;; Returns the inductively defined type that x constructs
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction ttL
|
||||
Σ-key-by-constructor : Σ x -> x
|
||||
[(Σ-key-by-constructor (Σ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...))) x_c)
|
||||
x]
|
||||
[(Σ-key-by-constructor (Σ (x_1 : t_1 any)) x)
|
||||
(Σ-key-by-constructor Σ x)])
|
||||
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (Σ-key-by-constructor ,Σ zero))
|
||||
(term nat))
|
||||
(check-equal?
|
||||
(term (Σ-key-by-constructor ,Σ s))
|
||||
(term nat)))
|
||||
|
||||
;; Returns the constructor map for the inductively defined type x_D in the signature Σ
|
||||
(define-metafunction ttL
|
||||
Σ-ref-constructor-map : Σ x -> ((x : t) ...) or #f
|
||||
;; NB: Depends on clause order
|
||||
[(Σ-ref-constructor-map ∅ x_D) #f]
|
||||
[(Σ-ref-constructor-map (Σ (x_D : t_D any)) x_D)
|
||||
any]
|
||||
[(Σ-ref-constructor-map (Σ (x_1 : t_1 any)) x_D)
|
||||
(Σ-ref-constructor-map Σ x_D)])
|
||||
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (Σ-ref-constructor-map ,Σ nat))
|
||||
(term ((zero : nat) (s : (Π (x : nat) nat)))))
|
||||
(check-equal?
|
||||
(term (Σ-ref-constructor-map ,sigma false))
|
||||
(term ())))
|
||||
|
||||
;; TODO: Should not use Σ-ref-type
|
||||
(define-metafunction ttL
|
||||
Σ-ref-constructor-type : Σ x x -> t
|
||||
[(Σ-ref-constructor-type Σ x_D x_ci)
|
||||
(Σ-ref-type Σ x_ci)])
|
||||
|
||||
;; Get the list of constructors for the inducitvely defined type x_D
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction ttL
|
||||
Σ-ref-constructors : Σ x -> (x ...) or #f
|
||||
[(Σ-ref-constructors ∅ x_D) #f]
|
||||
[(Σ-ref-constructors (Σ (x_D : t_D ((x : t) ...))) x_D)
|
||||
(x ...)]
|
||||
[(Σ-ref-constructors (Σ (x_1 : t_1 any)) x_D)
|
||||
(Σ-ref-constructors Σ x_D)])
|
||||
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction ttL
|
||||
sequence-index-of : any (any ...) -> natural
|
||||
[(sequence-index-of any_0 (any_0 any ...))
|
||||
0]
|
||||
[(sequence-index-of any_0 (any_1 any ...))
|
||||
,(add1 (term (sequence-index-of any_0 (any ...))))])
|
||||
|
||||
;; Get the index of the constructor x_ci in the list of constructors for x_D
|
||||
(define-metafunction ttL
|
||||
Σ-constructor-index : Σ x x -> natural
|
||||
[(Σ-constructor-index Σ x_D x_ci)
|
||||
(sequence-index-of x_ci (Σ-ref-constructors Σ x_D))])
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Operations that involve contexts.
|
||||
|
||||
|
@ -322,13 +329,30 @@
|
|||
|
||||
;; Applies the term t to the telescope Ξ.
|
||||
;; TODO: Test
|
||||
;; TODO: This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true
|
||||
;; that (equivalent t (Ξ-apply Ξ t))
|
||||
#| TODO:
|
||||
| This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true
|
||||
| that (equivalent t (Ξ-apply Ξ t))?
|
||||
| Maybe not. t is a lambda whose type is equivalent to (Ξ-apply Ξ t)?
|
||||
|#
|
||||
(define-metafunction tt-ctxtL
|
||||
Ξ-apply : Ξ t -> t
|
||||
[(Ξ-apply hole t) t]
|
||||
[(Ξ-apply (Π (x : t) Ξ) t_0) (Ξ-apply Ξ (t_0 x))])
|
||||
|
||||
;; Compose multiple telescopes into a single telescope:
|
||||
(define-metafunction tt-ctxtL
|
||||
Ξ-compose : Ξ Ξ ... -> Ξ
|
||||
[(Ξ-compose Ξ) Ξ]
|
||||
[(Ξ-compose Ξ_0 Ξ_1 Ξ_rest ...)
|
||||
(Ξ-compose (in-hole Ξ_0 Ξ_1) Ξ_rest ...)])
|
||||
|
||||
(module+ test
|
||||
(check-equiv?
|
||||
(term (Ξ-compose
|
||||
(Π (x : t_0) (Π (y : t_1) hole))
|
||||
(Π (z : t_2) (Π (a : t_3) hole))))
|
||||
(term (Π (x : t_0) (Π (y : t_1) (Π (z : t_2) (Π (a : t_3) hole)))))))
|
||||
|
||||
;; Compute the number of arguments in a Ξ
|
||||
(define-metafunction tt-ctxtL
|
||||
Ξ-length : Ξ -> natural
|
||||
|
@ -358,6 +382,23 @@
|
|||
;; Returns the inductive arguments to the constructor x_ci of the
|
||||
;; inducitvely defined type x_D
|
||||
|
||||
;; Returns the telescope of the arguments for the constructor x_ci of the inductively defined type x_D
|
||||
(define-metafunction tt-ctxtL
|
||||
Σ-constructor-telescope : Σ x x -> Ξ
|
||||
[(Σ-constructor-telescope Σ x_D x_ci)
|
||||
Ξ
|
||||
(where (in-hole Ξ (in-hole Θ x_D))
|
||||
(Σ-ref-constructor-type Σ x_D x_ci))])
|
||||
|
||||
;; Returns the parameter arguments as an apply context of the constructor x_ci of the inductively
|
||||
;; defined type x_D
|
||||
(define-metafunction tt-ctxtL
|
||||
Σ-constructor-parameters : Σ x x -> Θ
|
||||
[(Σ-constructor-parameters Σ x_D x_ci)
|
||||
Θ
|
||||
(where (in-hole Ξ (in-hole Θ x_D))
|
||||
(Σ-ref-constructor-type Σ x_D x_ci))])
|
||||
|
||||
;; Inner loop for Σ-constructor-noninductive-telescope
|
||||
(define-metafunction tt-ctxtL
|
||||
noninductive-loop : x Φ -> Φ
|
||||
|
@ -371,7 +412,7 @@
|
|||
(define-metafunction tt-ctxtL
|
||||
Σ-constructor-noninductive-telescope : Σ x x -> Ξ
|
||||
[(Σ-constructor-noninductive-telescope Σ x_D x_ci)
|
||||
(noninductive-loop (Σ-constructor-telescope))])
|
||||
(noninductive-loop x_D (Σ-constructor-telescope Σ x_D x_ci))])
|
||||
|
||||
;; Inner loop for Σ-constructor-inductive-telescope
|
||||
;; NB: Depends on clause order
|
||||
|
@ -387,7 +428,7 @@
|
|||
(define-metafunction tt-ctxtL
|
||||
Σ-constructor-inductive-telescope : Σ x x -> Ξ
|
||||
[(Σ-constructor-inductive-telescope Σ x_D x_ci)
|
||||
(inductive-loop (Σ-constructor-telescope))])
|
||||
(inductive-loop x_D (Σ-constructor-telescope Σ x_D x_ci))])
|
||||
|
||||
;; Returns the inductive hypotheses required for eliminating the inductively defined type x_D with
|
||||
;; motive t_P, where the telescope Φ are the inductive arguments to a constructor for x_D
|
||||
|
@ -406,6 +447,35 @@
|
|||
[(Σ-constructor-inductive-hypotheses Σ x_D x_ci t_P)
|
||||
(hypotheses-loop x_D t_P (Σ-constructor-inductive-telescope Σ x_D x_ci))])
|
||||
|
||||
(define-metafunction tt-ctxtL
|
||||
Σ-constructor-method-telescope : Σ x x t -> Ξ
|
||||
[(Σ-constructor-method-telescope Σ x_D x_ci t_P)
|
||||
(Π (x_mi : (in-hole Ξ_a (in-hole Ξ_h ((in-hole Θ_p t_P) (Ξ-apply Ξ_a x_ci)))))
|
||||
hole)
|
||||
(where Θ_p (Σ-constructor-parameters Σ x_D x_ci))
|
||||
(where Ξ_a (Σ-constructor-telescope Σ x_D x_ci))
|
||||
(where Ξ_h (Σ-constructor-inductive-hypotheses Σ x_D x_ci t_P))
|
||||
(where x_mi ,(variable-not-in (term (t_P Σ)) 'x-mi))])
|
||||
|
||||
;; fold Ξ-compose over map Σ-constructor-method-telescope over the list of constructors
|
||||
(define-metafunction tt-ctxtL
|
||||
method-loop : Σ x t (x ...) -> Ξ
|
||||
[(method-loop Σ x_D t_P ()) hole]
|
||||
[(method-loop Σ x_D t_P (x_0 x_rest ...))
|
||||
(Ξ-compose (Σ-constructor-method-telescope Σ x_D x_0 t_P) (method-loop Σ x_D t_P (x_rest ...)))])
|
||||
|
||||
;; Returns the telescope of all methods required to eliminate the type x_D with motive t_P
|
||||
(define-metafunction tt-ctxtL
|
||||
Σ-methods-telescope : Σ x t -> Ξ
|
||||
[(Σ-methods-telescope Σ x_D t_P)
|
||||
(method-loop Σ x_D t_P (Σ-ref-constructors Σ x_D))])
|
||||
|
||||
(module+ test
|
||||
;; NB: Test case not correct yet, needs inductive case
|
||||
#;(check-equiv?
|
||||
(term (Σ-methods-telescope ,Σ nat (λ (x : nat) nat)))
|
||||
(term (Π (x : nat) hole))))
|
||||
|
||||
;; Returns the methods required for eliminating the inductively defined type x_D, whose constructors
|
||||
;; are ((x_ci : t_ci) ...), with motive t_P.
|
||||
(define-metafunction tt-ctxtL
|
||||
|
@ -783,9 +853,7 @@
|
|||
(term ((hole zero) (λ (x : nat) x)))))
|
||||
(check-holds
|
||||
(telescope-types ,Σ ∅ (hole zero)
|
||||
(methods-for nat
|
||||
(λ (x : nat) nat)
|
||||
((zero : nat)))))
|
||||
(Σ-methods-telescope ,Σ nat (λ (x : nat) nat))))
|
||||
(check-holds
|
||||
(type-check ,Σ ∅ (λ (x : nat) (λ (ih-x : nat) x))
|
||||
(Π (x : nat) (Π (ih-x : nat) nat))))
|
||||
|
@ -793,21 +861,17 @@
|
|||
(telescope-types ,Σ ∅
|
||||
((hole zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||
(methods-for nat
|
||||
(λ (x : nat) nat)
|
||||
(Σ-ref-constructor-map ,Σ nat))))
|
||||
(Σ-methods-telescope ,Σ nat (λ (x : nat) nat))))
|
||||
(check-holds
|
||||
(telescope-types (,Σ4 (true : (Unv 0) ((tt : true))))
|
||||
∅ (hole (λ (A : (Unv 0)) (λ (B : (Unv 0))
|
||||
(λ (a : A) (λ (b : B) tt)))))
|
||||
(methods-for and
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
|
||||
(Σ-ref-constructor-map ,Σ4 and))))
|
||||
(Σ-methods-telescope ,Σ4 and
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true))))))
|
||||
(check-holds
|
||||
(telescope-types ,sigma (∅ x : false)
|
||||
hole
|
||||
(methods-for false (λ (y : false) (Π (x : Type) x))
|
||||
()))))
|
||||
(Σ-methods-telescope ,sigma false (λ (y : false) (Π (x : Type) x))))))
|
||||
|
||||
;; TODO: Bi-directional and inference?
|
||||
;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
|
||||
|
@ -858,7 +922,7 @@
|
|||
;; A fresh name for the motive
|
||||
(where x_P ,(variable-not-in (term (Σ Γ x_D Ξ Ξ_P*D x)) 'x-P))
|
||||
;; The types of the methods for this inductive.
|
||||
(where Ξ_m (methods-for x_D x_P (Σ-ref-constructor-map Σ x_D)))
|
||||
(where Ξ_m (Σ-methods-telescope Σ x_D x_P))
|
||||
----------------- "DTR-Elim_D"
|
||||
(type-infer Σ Γ (elim x_D U)
|
||||
;; The type of (elim x_D U) is something like:
|
||||
|
|
Loading…
Reference in New Issue
Block a user