Merge branch 'master' into actual-inductives
Conflicts: redex-curnel.rkt
This commit is contained in:
commit
8a5bff1aec
|
@ -16,7 +16,8 @@ cur (plural curs)
|
|||
Getting started
|
||||
===============
|
||||
|
||||
Don't actually try to run anything. The type-checker may be exponential,
|
||||
Requires redex-lib version 1.6 if you want answer in a reasonable amount
|
||||
of time. Otherwise, the type-checker may require exponential time
|
||||
or worse.
|
||||
|
||||
Open up `stlc.rkt` to see an example of what advanced meta-programming can let you do.
|
||||
|
|
10
oll.rkt
10
oll.rkt
|
@ -54,10 +54,11 @@
|
|||
(with-output-to-file (syntax->datum #'latex-file)
|
||||
(thunk
|
||||
(format "\\fbox{$~a$}$~n$\\begin{mathpar}~n~a~n\end{mathpar}$$"
|
||||
(syntax->datum #'(n types* ...))
|
||||
(string-trim
|
||||
(for/fold ([str ""])
|
||||
([rule (syntax->datum #'(rules.latex ...))])
|
||||
(format "~a~a\\and~n" rule))
|
||||
([rule (attribute rules.latex)])
|
||||
(format "~a~a\\and~n" str rule))
|
||||
"\\and"
|
||||
#:left? #f)))
|
||||
#:exists 'append))
|
||||
|
@ -263,7 +264,7 @@
|
|||
;; TODO: Need to add these to a literal set and export it
|
||||
;; Or, maybe overwrite syntax-parse
|
||||
#:literals (lambda forall data real-app case define-theorem
|
||||
define qed begin)
|
||||
define qed begin Type)
|
||||
[(begin e ...)
|
||||
(for/fold ([str ""])
|
||||
([e (syntax->list #'(e ...))])
|
||||
|
@ -311,7 +312,7 @@
|
|||
(begin
|
||||
(coq-lift-top-level
|
||||
(format "Inductive ~a : ~a :=~a."
|
||||
(syntax-e #'n)
|
||||
(sanitize-id (format "~a" (syntax-e #'n)))
|
||||
(output-coq #'t)
|
||||
(for/fold ([strs ""])
|
||||
([clause (syntax->list #'((x* : t*) ...))])
|
||||
|
@ -320,6 +321,7 @@
|
|||
(format "~a~n| ~a : ~a" strs (syntax-e #'x)
|
||||
(output-coq #'t))]))))
|
||||
"")]
|
||||
[(Type i) "Type"]
|
||||
[(case e (ec eb) ...)
|
||||
(format "(match ~a with~n~aend)"
|
||||
(output-coq #'e)
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
#lang s-exp "redex-curnel.rkt"
|
||||
(require "stdlib/sugar.rkt" "stdlib/prop.rkt")
|
||||
(require "stdlib/sugar.rkt" "stdlib/prop.rkt" racket/trace
|
||||
(for-syntax racket/syntax))
|
||||
|
||||
;; ---------
|
||||
(begin-for-syntax
|
||||
|
@ -7,40 +8,42 @@
|
|||
(format-id x "~a~a" x i)))
|
||||
|
||||
(define-syntax (rename syn)
|
||||
(syntax-case syn (Type forall Unv lambda :)
|
||||
[(_ i ls Type) #'Type]
|
||||
[(_ i ls (Unv n)) #'(Unv n)]
|
||||
[(_ i (xr ...) (lambda (x : t) e))
|
||||
#'(lambda (x : (rename i (xr ...) t))
|
||||
(rename i (xr ... x) e))]
|
||||
[(_ i (xr ...) (forall (x : t) e))
|
||||
#'(forall (x : (rename i (xr ...) t))
|
||||
(rename i (xr ... x) e))]
|
||||
[(_ i ls (e1 e2))
|
||||
#'((rename i ls e1) (rename i ls e2))]
|
||||
[(_ i ls x)
|
||||
(if (member (syntax->datum #'x) (syntax->datum #'ls))
|
||||
#'x
|
||||
(rename_id (syntax->datum #'i) #'x))]))
|
||||
(syntax-case syn ()
|
||||
[(_ i ls e)
|
||||
(syntax-case #`(ls #,(cur-expand #'e)) (Type forall Unv lambda :)
|
||||
[(_ Type) #'Type]
|
||||
[(_ (Unv n)) #'(Unv n)]
|
||||
[((xr ...) (lambda (x : t) e))
|
||||
#'(lambda (x : (rename i (xr ...) t))
|
||||
(rename i (xr ... x) e))]
|
||||
[((xr ...) (forall (x : t) e))
|
||||
#'(forall (x : (rename i (xr ...) t))
|
||||
(rename i (xr ... x) e))]
|
||||
[(ls (e1 e2))
|
||||
#'((rename i ls e1) (rename i ls e2))]
|
||||
[(ls x)
|
||||
(if (member (syntax->datum #'x) (syntax->datum #'ls))
|
||||
#'x
|
||||
(rename_id (syntax->datum #'i) #'x))])]))
|
||||
|
||||
(define-syntax (translate syn)
|
||||
(syntax-parse (cur-expand syn)
|
||||
(trace-define-syntax (translate syn)
|
||||
(syntax-parse (cur-expand (syntax-case syn () [(_ e) #'e]))
|
||||
;; TODO: Need to add these to a literal set and export it
|
||||
;; Or, maybe redefine syntax-parse
|
||||
#:datum-literals (:)
|
||||
#:literals (lambda forall data real-app case Type)
|
||||
[(_ Type)
|
||||
[Type
|
||||
#'(lambda* (x1 : Type) (x2 : Type) (->* x1 x2 Type))]
|
||||
[(_ (forall (x : A) B))
|
||||
[(forall (x : A) B)
|
||||
(let ([x1 (rename_id 1 #'x)]
|
||||
[x2 (rename_id 2 #'x)]
|
||||
[xr (rename_id 'r #'x)])
|
||||
#`(lambda* (f1 : (rename 1 () (forall (x : A) B)))
|
||||
(f2 : (rename 2 () (forall (x : A) B)))
|
||||
(forall* (#,x1 : (rename 1 () A)) (#,x2 : (rename 2 () A))
|
||||
(#,xr : ((translate A) #,x1 #,x2))
|
||||
(#,xr : (run ((translate A) #,x1 #,x2)))
|
||||
((translate B) (f1 #,x1) (f2 #,x2)))))]
|
||||
[(_ (lambda (x : A) B))
|
||||
[(lambda (x : A) B)
|
||||
(let ([x1 (rename_id 1 #'x)]
|
||||
[x2 (rename_id 2 #'x)]
|
||||
[xr (rename_id 'r #'x)])
|
||||
|
@ -48,15 +51,15 @@
|
|||
(f2 : (rename 2 () (forall (x : A) B)))
|
||||
(forall* (#,x1 : (rename 1 () A))
|
||||
(#,x2 : (rename 2 () A))
|
||||
(#,xr : ((translate A) #,x1 #,x2))
|
||||
(#,xr : (run ((translate A) #,x1 #,x2)))
|
||||
((translate B) (f1 #,x1) (f2 #,x2)))))]
|
||||
[(_ (data id : t (c : tc) ...))
|
||||
[(data id : t (c : tc) ...)
|
||||
(let ([t #`(data #,(rename_id 'r #'id) : (translate t)
|
||||
((translate c) : (translate tc)) ...)])
|
||||
t)]
|
||||
[(_ (f a))
|
||||
[(f a)
|
||||
#`((translate f) (rename 1 () a) (rename 2 () a) (translate a))]
|
||||
[(_ x)
|
||||
[x:id
|
||||
;; TODO: Look up x and generate the relation. Otherwise I need to
|
||||
;; manually translate all dependencies.
|
||||
;; Not sure this is quite right; Racket's hygiene might `save' me.
|
||||
|
@ -66,15 +69,16 @@
|
|||
(define-type X Type)
|
||||
(define X1 X)
|
||||
(define X2 X)
|
||||
(define (Xr (x1 : X) (x2 : X)) true)
|
||||
(define (Xr (x1 : X1) (x2 : X2)) true)
|
||||
|
||||
;; The type of a CPS function
|
||||
(define-type CPSf (forall* (ans : Type) (k : (-> X ans)) ans))
|
||||
|
||||
(define (CPSf-relation (f1 : CPSf) (f2 : CPSf))
|
||||
;; Run performs substitution, among other things, at compile.
|
||||
(translate (run CPSf)))
|
||||
(module+ test
|
||||
;; TODO: Fix run so I can simply use (run CPSf) to perform
|
||||
;; substitution
|
||||
(translate (forall* (ans : Type) (k : (-> X ans)) ans)))
|
||||
#;(module+ test
|
||||
(require rackunit)
|
||||
(check-equal?
|
||||
(translate (forall* (ans : Type) (k : (-> X ans)) ans))
|
||||
|
|
300
redex-curnel.rkt
300
redex-curnel.rkt
|
@ -9,6 +9,8 @@
|
|||
(provide
|
||||
(all-defined-out))
|
||||
|
||||
(set-cache-size! 10000)
|
||||
|
||||
;; References:
|
||||
;; http://www3.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf
|
||||
;; https://www.cs.uoregon.edu/research/summerschool/summer11/lectures/oplss-herbelin1.pdf
|
||||
|
@ -18,7 +20,7 @@
|
|||
;; -> for non-dependent function types, and type inference.
|
||||
(define-language cicL
|
||||
(i ::= natural)
|
||||
(U ::= Type (Unv i))
|
||||
(U ::= (Unv i))
|
||||
(x ::= variable-not-otherwise-mentioned)
|
||||
;; TODO: Having 2 binders is stupid.
|
||||
(v ::= (Π (x : t) t) (μ (x : t) t) (λ (x : t) t) x U)
|
||||
|
@ -38,10 +40,8 @@
|
|||
(check-true (x? (term s)))
|
||||
(check-true (t? (term zero)))
|
||||
(check-true (t? (term s)))
|
||||
(check-true (t? (term Type)))
|
||||
(check-true (x? (term nat)))
|
||||
(check-true (t? (term nat)))
|
||||
(check-true (U? (term Type)))
|
||||
(check-true (U? (term (Unv 0))))
|
||||
(check-true (e? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (v? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
|
@ -49,17 +49,12 @@
|
|||
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0)))))
|
||||
|
||||
;; 'A'
|
||||
;; Types of Universes
|
||||
;; (Unv 0)s of Universes
|
||||
;; Replace with sub-typing
|
||||
(define-judgment-form cicL
|
||||
#:mode (unv-ok I O)
|
||||
#:contract (unv-ok U U)
|
||||
|
||||
;; TODO: Type should be an alias for (Unv 0) I think, instead of a
|
||||
;; built-in thing, and defined via a macro.
|
||||
[-----------------
|
||||
(unv-ok Type (Unv 0))]
|
||||
|
||||
[(where i_1 ,(add1 (term i_0)))
|
||||
-----------------
|
||||
(unv-ok (Unv i_0) (Unv i_1))])
|
||||
|
@ -71,13 +66,13 @@
|
|||
#:contract (unv-kind U U U)
|
||||
|
||||
[----------------
|
||||
(unv-kind Type Type Type)]
|
||||
(unv-kind (Unv 0) (Unv 0) (Unv 0))]
|
||||
|
||||
[----------------
|
||||
(unv-kind Type (Unv i) (Unv i))]
|
||||
(unv-kind (Unv 0) (Unv i) (Unv i))]
|
||||
|
||||
[----------------
|
||||
(unv-kind (Unv i) Type Type)]
|
||||
(unv-kind (Unv i) (Unv 0) (Unv 0))]
|
||||
|
||||
[(where i_3 ,(max (term i_1) (term i_2)))
|
||||
----------------
|
||||
|
@ -140,12 +135,12 @@
|
|||
reduce : e -> e
|
||||
[(reduce e) ,(car (apply-reduction-relation* ==β (term e)))])
|
||||
(module+ test
|
||||
(check-equal? (term (reduce Type)) (term Type))
|
||||
(check-equal? (term (reduce ((λ (x : t) x) Type))) (term Type))
|
||||
(check-equal? (term (reduce ((Π (x : t) x) Type))) (term Type))
|
||||
(check-equal? (term (reduce (Unv 0))) (term (Unv 0)))
|
||||
(check-equal? (term (reduce ((λ (x : t) x) (Unv 0)))) (term (Unv 0)))
|
||||
(check-equal? (term (reduce ((Π (x : t) x) (Unv 0)))) (term (Unv 0)))
|
||||
;; NB: Currently not reducing under binders. I forget why.
|
||||
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) Type))))
|
||||
(term (Π (x : t) Type)))
|
||||
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) (Unv 0)))))
|
||||
(term (Π (x : t) (Unv 0))))
|
||||
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) x))))
|
||||
(term (Π (x : t) x)))
|
||||
;; TODO: Change uses of case to uses of elim-nat
|
||||
|
@ -171,7 +166,7 @@
|
|||
(module+ test
|
||||
;; TODO: Rename these signatures, and use them in all future tests.
|
||||
;; TODO: Convert these to new Σ format
|
||||
(define Σ (term (∅ (nat : Type ((zero : nat) (s : (Π (x : nat) nat)))
|
||||
(define Σ (term (∅ (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat)))
|
||||
(elim-nat : (Π (P : (Π (n : nat) (Unv i)))
|
||||
(Π (mz : (P zero))
|
||||
(Π (ms : (Π (n : nat) (Π (p : (P n)) (P (s n)))))
|
||||
|
@ -215,26 +210,25 @@
|
|||
|
||||
(define Σ0 (term ∅))
|
||||
(define Σ2 Σ)
|
||||
(define Σ3 (term (∅ (and : (Π (A : Type) (Π (B : Type) Type)) ()
|
||||
(elim-and : (Π (A : Type) (Π (B : Type)
|
||||
(define Σ3 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ()
|
||||
(elim-and : (Π (A : (Unv 0)) (Π (B : (Unv 0))
|
||||
(Π (P : (Π (p : ((and A) B)) (Unv i)))
|
||||
(Π (p : ((and A) B))
|
||||
(P p))))))))))
|
||||
(define Σ4 (term (∅ (and : (Π (A : Type) (Π (B : Type) Type))
|
||||
((conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B) ((and A) B)))))))
|
||||
(elim-and : (Π (P : (Π (A : Type) (Π (B : Type) (Π (p : ((and A) B)) (Unv i)))))
|
||||
(define Σ4 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
((conj : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))
|
||||
(elim-and : (Π (P : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (p : ((and A) B)) (Unv i)))))
|
||||
(Π
|
||||
(mconj :
|
||||
(Π (A : Type)
|
||||
(Π (B : Type)
|
||||
(Π (A : (Unv 0))
|
||||
(Π (B : (Unv 0))
|
||||
(Π (a : A)
|
||||
(Π (b : B)
|
||||
(P A B ((((conj A) B) a) b))))))
|
||||
(Π (A : Type)
|
||||
(Π (B : Type)
|
||||
(Π (A : (Unv 0))
|
||||
(Π (B : (Unv 0))
|
||||
(Π (p : ((and A) B))
|
||||
(P A B p))))))))))))
|
||||
|
||||
(check-true (Σ? Σ0))
|
||||
(check-true (Σ? Σ2))
|
||||
(check-true (Σ? Σ4))
|
||||
|
@ -284,14 +278,14 @@
|
|||
(constructor-for (Σ x_0 : t_0) t_1 x)])
|
||||
(module+ test
|
||||
(check-true
|
||||
(judgment-holds (constructor-for ((∅ truth : Type) T : truth) truth T)))
|
||||
(judgment-holds (constructor-for ((∅ truth : (Unv 0)) T : truth) truth T)))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(constructor-for ((∅ nat : Type) zero : nat)
|
||||
(constructor-for ((∅ nat : (Unv 0)) zero : nat)
|
||||
nat zero)))
|
||||
(check set=?
|
||||
(judgment-holds
|
||||
(constructor-for (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
(constructor-for (((∅ nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
|
||||
nat x) x)
|
||||
(list (term zero) (term s))))
|
||||
(define-metafunction cic-typingL
|
||||
|
@ -302,10 +296,10 @@
|
|||
(judgment-holds (constructor-for Σ x_0 x_00) x_00))])
|
||||
(module+ test
|
||||
(check-true
|
||||
(term (constructors-for (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
(term (constructors-for (((∅ nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
|
||||
nat (zero s))))
|
||||
(check-false
|
||||
(term (constructors-for (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
(term (constructors-for (((∅ nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
|
||||
nat (zero))))
|
||||
(check-true
|
||||
(term (constructors-for ,Σ4 and (conj)))))
|
||||
|
@ -317,13 +311,13 @@
|
|||
;[(branch-type t_ind t_ind t) t])
|
||||
[(branch-type t_ind t_other t) t])
|
||||
(module+ test
|
||||
(check-equal? (term Type) (term (branch-type nat (lookup ,Σ zero) Type)))
|
||||
(check-equal? (term (Unv 0)) (term (branch-type nat (lookup ,Σ zero) (Unv 0))))
|
||||
(check-equal? (term nat) (term (branch-type nat nat nat)))
|
||||
(check-equal? (term Type) (term (branch-type nat (lookup ,Σ s) (Π (x : nat) Type))))
|
||||
(check-equal? (term (Unv 0)) (term (branch-type nat (lookup ,Σ s) (Π (x : nat) (Unv 0)))))
|
||||
(check-equal?
|
||||
(term Type)
|
||||
(term (Unv 0))
|
||||
(term (branch-type and (lookup ,Σ4 conj)
|
||||
(Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B) Type))))))))
|
||||
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) (Unv 0)))))))))
|
||||
|
||||
(define-metafunction cic-typingL
|
||||
branch-types-match : Σ (x ...) (t ...) t t -> #t or #f
|
||||
|
@ -331,33 +325,33 @@
|
|||
,(andmap (curry equal? (term t)) (term ((branch-type t_1 (lookup Σ x) t_11) ...)))])
|
||||
(module+ test
|
||||
(check-true
|
||||
(term (branch-types-match ((∅ truth : Type) T : truth) () () Type nat)))
|
||||
(term (branch-types-match ((∅ truth : (Unv 0)) T : truth) () () (Unv 0) nat)))
|
||||
(check-true
|
||||
(term (branch-types-match ,Σ (zero s) (Type (Π (x : nat) Type)) Type nat)))
|
||||
(term (branch-types-match ,Σ (zero s) ((Unv 0) (Π (x : nat) (Unv 0))) (Unv 0) nat)))
|
||||
(check-true
|
||||
(term (branch-types-match ,Σ (zero s) (nat (Π (x : nat) nat)) nat nat))))
|
||||
|
||||
;; TODO: Add positivity checking.
|
||||
(define-metafunction cicL
|
||||
positive : t any -> #t or #f
|
||||
;; Type; not a inductive constructor
|
||||
;; (Unv 0); not a inductive constructor
|
||||
[(positive any_1 any_2) #t])
|
||||
|
||||
(module+ test
|
||||
(check-true (term (positive nat nat)))
|
||||
(check-true (term (positive (Π (x : Type) (Π (y : Type) Type)) #f)))
|
||||
(check-true (term (positive (Π (x : (Unv 0)) (Π (y : (Unv 0)) (Unv 0))) #f)))
|
||||
(check-true (term (positive (Π (x : nat) nat) nat)))
|
||||
;; (nat -> nat) -> nat
|
||||
;; Not sure if this is actually supposed to pass
|
||||
(check-false (term (positive (Π (x : (Π (y : nat) nat)) nat) nat)))
|
||||
;; (Type -> nat) -> nat
|
||||
(check-true (term (positive (Π (x : (Π (y : Type) nat)) nat) nat)))
|
||||
;; (((nat -> Type) -> nat) -> nat)
|
||||
(check-true (term (positive (Π (x : (Π (y : (Π (x : nat) Type)) nat)) nat) nat)))
|
||||
;; ((Unv 0) -> nat) -> nat
|
||||
(check-true (term (positive (Π (x : (Π (y : (Unv 0)) nat)) nat) nat)))
|
||||
;; (((nat -> (Unv 0)) -> nat) -> nat)
|
||||
(check-true (term (positive (Π (x : (Π (y : (Π (x : nat) (Unv 0))) nat)) nat) nat)))
|
||||
;; Not sure if this is actually supposed to pass
|
||||
(check-false (term (positive (Π (x : (Π (y : (Π (x : nat) nat)) nat)) nat) nat)))
|
||||
|
||||
(check-true (term (positive Type #f))))
|
||||
(check-true (term (positive (Unv 0) #f))))
|
||||
|
||||
(define-judgment-form cic-typingL
|
||||
#:mode (wf I I)
|
||||
|
@ -378,19 +372,19 @@
|
|||
(wf (Σ x : t) ∅)])
|
||||
(module+ test
|
||||
(check-true (judgment-holds (wf ∅ ∅)))
|
||||
(check-true (judgment-holds (wf (∅ truth : Type) ∅)))
|
||||
(check-true (judgment-holds (wf ∅ (∅ x : Type))))
|
||||
(check-true (judgment-holds (wf (∅ nat : Type) (∅ x : nat))))
|
||||
(check-true (judgment-holds (wf (∅ nat : Type) (∅ x : (Π (x : nat) nat))))))
|
||||
(check-true (judgment-holds (wf (∅ truth : (Unv 0)) ∅)))
|
||||
(check-true (judgment-holds (wf ∅ (∅ x : (Unv 0)))))
|
||||
(check-true (judgment-holds (wf (∅ nat : (Unv 0)) (∅ x : nat))))
|
||||
(check-true (judgment-holds (wf (∅ nat : (Unv 0)) (∅ x : (Π (x : nat) nat))))))
|
||||
|
||||
;; TODO: Add termination checking
|
||||
(define-metafunction cicL
|
||||
terminates? : t -> #t or #f
|
||||
[(terminates? t) #t])
|
||||
(module+ test
|
||||
(check-false (term (terminates? (μ (x : Type) x))))
|
||||
(check-false (term (terminates? (μ (x : Type) (λ (y : Type) (x y))))))
|
||||
(check-true (term (terminates? (μ (x : Type) (λ (y : Type) y))))))
|
||||
(check-false (term (terminates? (μ (x : (Unv 0)) x))))
|
||||
(check-false (term (terminates? (μ (x : (Unv 0)) (λ (y : (Unv 0)) (x y))))))
|
||||
(check-true (term (terminates? (μ (x : (Unv 0)) (λ (y : (Unv 0)) y))))))
|
||||
|
||||
(define-judgment-form cic-typingL
|
||||
#:mode (types I I I O)
|
||||
|
@ -405,6 +399,7 @@
|
|||
----------------- "DTR-Inductive"
|
||||
(types Σ Γ x t)]
|
||||
|
||||
;; TODO: Require alpha-equiv here, at least.
|
||||
[(where t (lookup Γ x))
|
||||
----------------- "DTR-Start"
|
||||
(types Σ Γ x t)]
|
||||
|
@ -449,72 +444,72 @@
|
|||
;; searches it.
|
||||
;; Perhaps something closer to Zombies = type would be better.
|
||||
;; For now, reduce types
|
||||
#;[(types Γ e (in-hole E t))
|
||||
#;[(types Σ Γ e (in-hole E t))
|
||||
(where t_0 (in-hole E t))
|
||||
(where t_1 ,(car (apply-reduction-relation* ==β (term t_0))))
|
||||
(types Γ t_1 U)
|
||||
(types Σ Γ t_1 U)
|
||||
----------------- "DTR-Conversion"
|
||||
(types Γ e t_1)])
|
||||
(types Σ Γ e t_1)])
|
||||
(module+ test
|
||||
(check-true (judgment-holds (types ∅ ∅ Type (Unv 0))))
|
||||
(check-true (judgment-holds (types ∅ (∅ x : Type) Type (Unv 0))))
|
||||
(check-true (judgment-holds (types ∅ (∅ x : Type) x Type)))
|
||||
(check-true (judgment-holds (types ∅ ((∅ x_0 : Type) x_1 : Type)
|
||||
(Π (x_3 : x_0) x_1) Type)))
|
||||
(check-true (judgment-holds (types ∅ ∅ (Unv 0) (Unv 1))))
|
||||
(check-true (judgment-holds (types ∅ (∅ x : (Unv 0)) (Unv 0) (Unv 1))))
|
||||
(check-true (judgment-holds (types ∅ (∅ x : (Unv 0)) x (Unv 0))))
|
||||
(check-true (judgment-holds (types ∅ ((∅ x_0 : (Unv 0)) x_1 : (Unv 0))
|
||||
(Π (x_3 : x_0) x_1) (Unv 0))))
|
||||
|
||||
(check-true (judgment-holds (types ∅ (∅ x_0 : Type) x_0 U_1)))
|
||||
(check-true (judgment-holds (types ∅ ((∅ x_0 : Type) x_2 : x_0) Type U_2)))
|
||||
(check-true (judgment-holds (unv-kind Type (Unv 0) (Unv 0))))
|
||||
(check-true (judgment-holds (types ∅ (∅ x_0 : Type) (Π (x_2 : x_0) Type) t)))
|
||||
(check-true (judgment-holds (types ∅ (∅ x_0 : (Unv 0)) x_0 U_1)))
|
||||
(check-true (judgment-holds (types ∅ ((∅ x_0 : (Unv 0)) x_2 : x_0) (Unv 0) U_2)))
|
||||
(check-true (judgment-holds (unv-kind (Unv 0) (Unv 0) (Unv 0))))
|
||||
(check-true (judgment-holds (types ∅ (∅ x_0 : (Unv 0)) (Π (x_2 : x_0) (Unv 0)) t)))
|
||||
|
||||
(check-true (judgment-holds (types ∅ ∅ (λ (x : Type) x) (Π (x : Type) Type))))
|
||||
(check-true (judgment-holds (types ∅ ∅ (λ (y : Type) (λ (x : y) x))
|
||||
(Π (y : Type) (Π (x : y) y)))))
|
||||
(check-true (judgment-holds (types ∅ ∅ (λ (x : (Unv 0)) x) (Π (x : (Unv 0)) (Unv 0)))))
|
||||
(check-true (judgment-holds (types ∅ ∅ (λ (y : (Unv 0)) (λ (x : y) x))
|
||||
(Π (y : (Unv 0)) (Π (x : y) y)))))
|
||||
|
||||
(check-equal? (list (term (Unv 0)))
|
||||
(check-equal? (list (term (Unv 1)))
|
||||
(judgment-holds
|
||||
(types ∅ ((∅ x1 : Type) x2 : Type) (Π (t6 : x1) (Π (t2 : x2) Type))
|
||||
(types ∅ ((∅ x1 : (Unv 0)) x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0)))
|
||||
U)
|
||||
U))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(types ∅ ∅ (Π (x2 : Type) (Unv 0))
|
||||
(types ∅ ∅ (Π (x2 : (Unv 0)) (Unv 0))
|
||||
U)))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(types ∅ (∅ x1 : Type) (λ (x2 : Type) (Π (t6 : x1) (Π (t2 : x2) Type)))
|
||||
(types ∅ (∅ x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))))
|
||||
t)))
|
||||
(check-true
|
||||
(judgment-holds (types ((∅ truth : Type) T : truth)
|
||||
(judgment-holds (types ((∅ truth : (Unv 0)) T : truth)
|
||||
∅
|
||||
T
|
||||
truth)))
|
||||
(check-true
|
||||
(judgment-holds (types ((∅ truth : Type) T : truth)
|
||||
(judgment-holds (types ((∅ truth : (Unv 0)) T : truth)
|
||||
∅
|
||||
Type
|
||||
(Unv 0))))
|
||||
(Unv 0)
|
||||
(Unv 1))))
|
||||
;; TODO: Change uses of case to uses of elim-
|
||||
(check-true
|
||||
(judgment-holds (types ((∅ truth : Type) T : truth)
|
||||
(judgment-holds (types ((∅ truth : (Unv 0)) T : truth)
|
||||
∅
|
||||
(case T (T Type))
|
||||
(Unv 0))))
|
||||
(case T (T (Unv 0)))
|
||||
(Unv 1))))
|
||||
|
||||
(check-false
|
||||
(judgment-holds (types ((∅ truth : Type) T : truth)
|
||||
(judgment-holds (types ((∅ truth : (Unv 0)) T : truth)
|
||||
∅
|
||||
(case T (T Type) (T Type))
|
||||
(Unv 0))))
|
||||
(case T (T (Unv 0)) (T (Unv 0)))
|
||||
(Unv 1))))
|
||||
(define-syntax-rule (nat-test syn ...)
|
||||
(check-true (judgment-holds
|
||||
(types (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
(types (((∅ nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
|
||||
syn ...))))
|
||||
(nat-test ∅ (Π (x : nat) nat) Type)
|
||||
(nat-test ∅ (Π (x : nat) nat) (Unv 0))
|
||||
(nat-test ∅ (λ (x : nat) x) (Π (x : nat) nat))
|
||||
(nat-test ∅ (case zero (zero zero) (s (λ (x : nat) x)))
|
||||
nat)
|
||||
(nat-test ∅ nat Type)
|
||||
(nat-test ∅ nat (Unv 0))
|
||||
(nat-test ∅ zero nat)
|
||||
(nat-test ∅ s (Π (x : nat) nat))
|
||||
(nat-test ∅ (s zero) nat)
|
||||
|
@ -523,121 +518,74 @@
|
|||
(nat-test ∅ (case zero (zero (s zero)) (s (λ (x : nat) (s (s x)))))
|
||||
nat)
|
||||
(check-false (judgment-holds
|
||||
(types (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
(types (((∅ nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
|
||||
∅
|
||||
(case zero (zero (s zero)))
|
||||
nat)))
|
||||
(define lam (term (λ (nat : Type) nat)))
|
||||
(define lam (term (λ (nat : (Unv 0)) nat)))
|
||||
(check-equal?
|
||||
(list (term (Π (nat : Type) Type)))
|
||||
(list (term (Π (nat : (Unv 0)) (Unv 0))))
|
||||
(judgment-holds (types ,Σ0 ∅ ,lam t) t))
|
||||
(check-equal?
|
||||
(list (term (Π (nat : Type) Type)))
|
||||
(list (term (Π (nat : (Unv 0)) (Unv 0))))
|
||||
(judgment-holds (types ,Σ2 ∅ ,lam t) t))
|
||||
(check-equal?
|
||||
(list (term (Π (x : (Π (y : Type) y)) nat)))
|
||||
(judgment-holds (types (∅ nat : Type) ∅ (λ (x : (Π (y : Type) y)) (x nat))
|
||||
(list (term (Π (x : (Π (y : (Unv 0)) y)) nat)))
|
||||
(judgment-holds (types (∅ nat : (Unv 0)) ∅ (λ (x : (Π (y : (Unv 0)) y)) (x nat))
|
||||
t) t))
|
||||
(check-equal?
|
||||
(list (term (Π (y : Type) Type)))
|
||||
(judgment-holds (types (∅ nat : Type) ∅ (λ (y : Type) y) t) t))
|
||||
(list (term (Π (y : (Unv 0)) (Unv 0))))
|
||||
(judgment-holds (types (∅ nat : (Unv 0)) ∅ (λ (y : (Unv 0)) y) t) t))
|
||||
(check-equal?
|
||||
(list (term Type))
|
||||
(judgment-holds (types (∅ nat : Type) ∅
|
||||
((λ (x : (Π (y : Type) Type)) (x nat))
|
||||
(λ (y : Type) y))
|
||||
(list (term (Unv 0)))
|
||||
(judgment-holds (types (∅ nat : (Unv 0)) ∅
|
||||
((λ (x : (Π (y : (Unv 0)) (Unv 0))) (x nat))
|
||||
(λ (y : (Unv 0)) y))
|
||||
t) t))
|
||||
(check-equal?
|
||||
(list (term Type))
|
||||
(list (term (Unv 0)) (term (Unv 1)))
|
||||
(judgment-holds
|
||||
(types ,Σ4 ∅ (Π (S : Type) (Π (B : Type) (Π (a : S) (Π (b : B) ((and S) B)))))
|
||||
(types ,Σ4 ∅ (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))
|
||||
U) U))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ4 (∅ S : Type) conj (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B) ((and A) B))))))))
|
||||
(judgment-holds (types ,Σ4 (∅ S : (Unv 0)) conj (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B))))))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ4 (∅ S : Type) S Type)))
|
||||
(judgment-holds (types ,Σ4 (∅ S : (Unv 0)) S (Unv 0))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ4 (∅ S : Type) (conj S)
|
||||
(Π (B : Type) (Π (a : S) (Π (b : B) ((and S) B)))))))
|
||||
(judgment-holds (types ,Σ4 (∅ S : (Unv 0)) (conj S)
|
||||
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ4 (∅ S : Type) (conj S)
|
||||
(Π (B : Type) (Π (a : S) (Π (b : B) ((and S) B)))))))
|
||||
(judgment-holds (types ,Σ4 (∅ S : (Unv 0)) (conj S)
|
||||
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ4 ∅ (λ (S : Type) (conj S))
|
||||
(Π (S : Type) (Π (B : Type) (Π (a : S) (Π (b : B) ((and S) B))))))))
|
||||
(judgment-holds (types ,Σ4 ∅ (λ (S : (Unv 0)) (conj S))
|
||||
(Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))))
|
||||
(check-true
|
||||
(judgment-holds (types ((,Σ4 true : Type) tt : true) ∅
|
||||
(judgment-holds (types ((,Σ4 true : (Unv 0)) tt : true) ∅
|
||||
((((conj true) true) tt) tt)
|
||||
((and true) true))))
|
||||
(check-true
|
||||
(judgment-holds (types ((,Σ4 true : Type) tt : true) ∅
|
||||
(judgment-holds (types ((,Σ4 true : (Unv 0)) tt : true) ∅
|
||||
(case ((((conj true) true) tt) tt)
|
||||
(conj (λ (A : Type)
|
||||
(λ (B : Type)
|
||||
(conj (λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) a))))))
|
||||
A)))
|
||||
(define sigma (term (((((((∅ true : Type) T : true) false : Type) equal : (Π (A : Type)
|
||||
(Π (B : Type) Type)))
|
||||
nat : Type) heap : Type) pre : (Π (temp808 : heap) Type))))
|
||||
(define sigma (term (((((((∅ true : (Unv 0)) T : true) false : (Unv 0)) equal : (Π (A : (Unv 0))
|
||||
(Π (B : (Unv 0)) (Unv 0))))
|
||||
nat : (Unv 0)) heap : (Unv 0)) pre : (Π (temp808 : heap) (Unv 0)))))
|
||||
(define gamma (term (∅ temp863 : pre)))
|
||||
(check-true (judgment-holds (wf ,sigma ∅)))
|
||||
(check-true (judgment-holds (wf ,sigma ,gamma)))
|
||||
(check-true
|
||||
(judgment-holds (types ,sigma ,gamma Type t)))
|
||||
(judgment-holds (types ,sigma ,gamma (Unv 0) t)))
|
||||
(check-true
|
||||
(judgment-holds (types ,sigma ,gamma pre t)))
|
||||
(check-true
|
||||
(judgment-holds (types ,sigma (,gamma tmp863 : pre) Type (Unv 0))))
|
||||
(judgment-holds (types ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1))))
|
||||
(check-true
|
||||
(judgment-holds (types ,sigma (,gamma x : false) (case x) t)))
|
||||
)
|
||||
|
||||
|
||||
(define-judgment-form cic-typingL
|
||||
#:mode (type-check I I I)
|
||||
#:contract (type-check Γ e t)
|
||||
|
||||
[(types Σ ∅ e t)
|
||||
---------------
|
||||
(type-check Σ e (reduce t))])
|
||||
|
||||
;; Infer-core Language
|
||||
;; A relaxed core where annotation are optional.
|
||||
(define-extended-language cic-surfaceL cicL
|
||||
(v ::= .... (λ x e) (Π t e))
|
||||
(t e ::= .... (data x (x : t) (x : t) ...) (case e ([e e] ...)) (e : t)))
|
||||
|
||||
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
|
||||
#;(define-judgment-form cic-typingL
|
||||
#:mode (synth I I O)
|
||||
#:contract (synth Γ t t)
|
||||
|
||||
[(unv-ok U_0 U_1)
|
||||
----------------- "DTR-SAxiom"
|
||||
(synth ∅ U_0 U_1)]
|
||||
|
||||
[(where t (lookup Γ x))
|
||||
(synth (remove Γ x) t U)
|
||||
----------------- "DTR-SStart"
|
||||
(synth Γ x t)]
|
||||
|
||||
[(synth Γ t t_1) (synth Γ t_0 U)
|
||||
----------------- "DTR-SWeakening"
|
||||
(synth (Γ x : t_0) t t_1)]
|
||||
|
||||
[(check (Γ x : t_0) e t_1)
|
||||
----------------- "DTR-SAbstraction"
|
||||
(check Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
|
||||
|
||||
[(synth Γ e_0 (Π (x : t_0) t_1))
|
||||
(check Γ e_1 t_0)
|
||||
----------------- "DTR-SApplication"
|
||||
(synth Γ (e_0 e_1) (subst t_1 x e_1))]
|
||||
|
||||
[(check Γ e t)
|
||||
----------------- "DTR-SAnnotate"
|
||||
(synth Γ (e : t) t)]) )
|
||||
(judgment-holds (types ,sigma (,gamma x : false) (case x) t)))))
|
||||
|
||||
;; This module just provide module language sugar over the redex model.
|
||||
|
||||
|
@ -683,8 +631,10 @@
|
|||
[dep-inductive data]
|
||||
|
||||
[dep-var #%top]
|
||||
|
||||
; [dep-datum #%datum]
|
||||
[dep-define define])
|
||||
Type
|
||||
;; DYI syntax extension
|
||||
define-syntax
|
||||
begin-for-syntax
|
||||
|
@ -772,11 +722,9 @@
|
|||
;; Locally expand everything down to core forms.
|
||||
(define (core-expand syn)
|
||||
(disarm
|
||||
(if (identifier? syn)
|
||||
syn
|
||||
(local-expand syn 'expression
|
||||
(append (syntax-e #'(term reduce subst-all dep-var #%app λ Π
|
||||
Type)))))))
|
||||
(local-expand syn 'expression
|
||||
(append (syntax-e #'(term reduce subst-all dep-var #%app λ Π μ case
|
||||
Unv #%datum))))))
|
||||
|
||||
;; Only type-check at the top-level, to prevent exponential
|
||||
;; type-checking. Redex is expensive enough.
|
||||
|
@ -792,11 +740,12 @@
|
|||
(let cur->datum ([syn syn])
|
||||
(syntax-parse (core-expand syn)
|
||||
#:literals (term reduce #%app subst-all)
|
||||
#:datum-literals (Π λ : Type)
|
||||
#:datum-literals (case Π λ μ : Unv)
|
||||
[x:id (syntax->datum #'x)]
|
||||
[(subst-all e _ _) (syntax->datum #'e)]
|
||||
[(reduce e) (cur->datum #'e)]
|
||||
[(term e) (cur->datum #'e)]
|
||||
[(Unv i) (term (Unv ,(syntax->datum #'i)))]
|
||||
;; TODO: should really check that b is one of the binders
|
||||
;; Maybe make a syntax class for the binders, core forms,
|
||||
;; etc.
|
||||
|
@ -840,6 +789,8 @@
|
|||
dep-forall dep-var))
|
||||
ls)))))
|
||||
|
||||
;; TODO: OOps, run doesn't return a cur term but a redex term
|
||||
;; wrapped in syntax bla. This is bad.
|
||||
(define-syntax (run syn)
|
||||
(syntax-case syn ()
|
||||
[(_ expr) (normalize/syn #'expr)]))
|
||||
|
@ -1006,6 +957,15 @@
|
|||
(syntax-case syn (:)
|
||||
[(_ (x : t) e) (syntax->curnel-syntax #`(Π (x : t) e))]))
|
||||
|
||||
(define-syntax (Type syn)
|
||||
(syntax-case syn ()
|
||||
[(_ i) (syntax->curnel-syntax #'(Unv i))]
|
||||
[_ #'(Type 0)]))
|
||||
|
||||
(define-syntax (dep-fix syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ (x : t) e) (syntax->curnel-syntax #`(μ (x : t) e))]))
|
||||
|
||||
(define-syntax (dep-inductive syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ i : ti (x1 : t1) ...)
|
||||
|
|
|
@ -18,9 +18,7 @@
|
|||
|
||||
(define-syntax (-> syn)
|
||||
(syntax-case syn ()
|
||||
[(_ t1 t2)
|
||||
(with-syntax ([(x) (generate-temporaries '(1))])
|
||||
#`(forall (x : t1) t2))]))
|
||||
[(_ t1 t2) #`(forall (#,(gensym) : t1) t2)]))
|
||||
|
||||
(define-syntax ->*
|
||||
(syntax-rules ()
|
||||
|
|
13
stlc.rkt
13
stlc.rkt
|
@ -15,17 +15,16 @@
|
|||
;; TODO: Abstract this over stlc-type, and provide from in OLL
|
||||
(data gamma : Type
|
||||
(emp-gamma : gamma)
|
||||
(ext-gamma : (->* gamma var stlc-type gamma)))
|
||||
(extend-gamma : (->* gamma var stlc-type gamma)))
|
||||
|
||||
(define-rec (lookup-gamma (g : gamma) (x : var) : (maybe stlc-type))
|
||||
(case* g
|
||||
[emp-gamma (none stlc-type)]
|
||||
[(ext-gamma (g1 : gamma) (v1 : var) (t1 : stlc-type))
|
||||
[(extend-gamma (g1 : gamma) (v1 : var) (t1 : stlc-type))
|
||||
(if (var-equal? v1 x)
|
||||
(some stlc-type t1)
|
||||
(lookup-gamma g1 x))]))
|
||||
|
||||
|
||||
(define-relation (has-type gamma stlc-term stlc-type)
|
||||
#:output-coq "stlc.v"
|
||||
#:output-latex "stlc.tex"
|
||||
|
@ -41,7 +40,7 @@
|
|||
------------------------ T-False
|
||||
(has-type g (stlc-val-->-stlc-term stlc-false) stlc-boolty)]
|
||||
|
||||
[(g : gamma) (x : var) (t : style-type)
|
||||
[(g : gamma) (x : var) (t : stlc-type)
|
||||
(== (maybe stlc-type) (lookup-gamma g x) (some stlc-type t))
|
||||
------------------------ T-Var
|
||||
(has-type g (var-->-stlc-term x) t)]
|
||||
|
@ -55,9 +54,11 @@
|
|||
|
||||
[(g : gamma) (e1 : stlc-term) (e2 : stlc-term)
|
||||
(t1 : stlc-type) (t2 : stlc-type)
|
||||
(t : stlc-type)
|
||||
(x : var) (y : var)
|
||||
(has-type g e1 (stlc-* t1 t2))
|
||||
(has-type (extend-gamma (extend-gamma g x t1) t y2) e2 t)
|
||||
---------------------- T-Pair
|
||||
(has-type (extend-gamma (extend-gamma g x t1) y t2) e2 t)
|
||||
---------------------- T-Let
|
||||
(has-type g (stlc-let x y e1 e2) t)]
|
||||
|
||||
[(g : gamma) (e1 : stlc-term) (t1 : stlc-type) (t2 : stlc-type) (x : var)
|
||||
|
|
Loading…
Reference in New Issue
Block a user