A complete sketch of typing for elim-D (case)

This commit is contained in:
William J. Bowman 2015-03-23 19:29:56 -04:00
parent 8a5bff1aec
commit 97c1d144aa

View File

@ -24,7 +24,7 @@
(x ::= variable-not-otherwise-mentioned)
;; TODO: Having 2 binders is stupid.
(v ::= (Π (x : t) t) (μ (x : t) t) (λ (x : t) t) x U)
(t e ::= v (t t)))
(t e ::= v (t t) (elim e ...)))
(define x? (redex-match? cicL x))
(define t? (redex-match? cicL t))
@ -152,14 +152,16 @@
(term (s (s (s (s z)))))))
;; TODO: Bi-directional and inference?
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
(define-extended-language cic-typingL cicL
;; NB: There may be a bijection between Γ and Ξ. That's
;; NB: interesting.
(Γ ::= (Γ x : t))
;; Σ is a signature (list) of inductively defined data with it's
;; constructors, and eliminator.
;; (inductive-name : type ((constr : t) ...) (elim- : t))
(Σ ::= (Σ (x : t ((x : t) ...) (x : t)))))
;; constructors
;; (inductive-name : type ((constr : t) ...))
(Σ ::= (Σ (x : t ((x : t) ...)))))
(define Σ? (redex-match? cic-typingL Σ))
(define Γ? (redex-match? cic-typingL Γ))
@ -177,36 +179,42 @@
(case n
zero mz
s (λ (u : nat) (ms u (f u))))))
;; OR, I need some kind of extensible semantics so I can create a
;; new patterns ala:
;; ((((elim-nat t) e_1) e_2) z) => e_1
;; ((((elim-nat t) e_1) e_2) (s n)) => ((e2 n) ((((elim-nat t) e_1) e_2) n))
;; Whichhh I might be able to do via meta-functions, in Redex.
;; Trying to generate well-typed eliminators generally amounts to
;; trying to give a single type and rule to elim-D, which is
;; basically the same thing as case. So might as well just use case?
;; (Telescope) (Ξ Φ) ::= hole (Π (x : t) Ξ)
;; (Apply context) Θ ::= hole (Θ e)
;;
;; Regardless, to perform the schema transformation correctly,
;; single-arity function are becoming a burden. Perhaps I need a
;; new abstraction ... Telescopes?
;; (apply-telescope D hole ) = D
;; (apply-telescope D (Π (x : t) Ψ)) = (apply-telescope (D x) Ψ)
;; elim-nat (t : nat) (P : ...) (mz : (P zero)) (ms : (n : nat) -> P n -> P (suc n))
;; (elim-nat t) => (m_i Ψ)
;; (where (_ ... (m_i t) _ ...)
;; ((mz z) (ms s)))
;; (where (_ ... (m_i : (Ψ -> P t)) _ ...)
;; ((mz : (P zero))
;; (ms : (... -> P (suc n)))))
;; (Telescope) Ψ ::= hole (Π (x : t) Ψ)
;;
;; elim-D : (x : D) (P : (in-hole Ψ U)) (m_i : t_i) ... (P x)
;; (fresh x P m_i)
;; (where (c_i ...) (constructors-for D))
;; (where ((Δ_i ...)) ())
;; (where (t_i ...)
;; (-> (x )))
;; ... trying to do this amounts to trying to give a single type and
;; rule to elim-D, which is basically the same thing as case. So
;; might as well just use case?
;; Data: (when does an inductive type-check. Should specify this using judgment forms)
;;
;; (D : (in-hole Ξ U) ((c : (in-hole Ξ (in-hole Φ (in-hole Θ D)))) ...))
;; (side-condition (judgment-holds (check-constructor Φ)))
;;
;; (check-constructor D hole) = #t
;; (check-constructor D (Π (x : (in-hole Φ (in-hole Θ D))) Φ_1)) = (check-constructor Φ_1)
;; (check-constructor D any) = #f
;;
;;
;; elim : (Π (i_0 : T_0) (Π (i_1 : T_1) ... (Π (x : ((D i_0) ... i_n)) ...)))
;; elim : (in-hole Ξ (Π (x : (apply-telescope D Ξ))
;; (Π (P : (in-hole (in-hole Ξ (apply-telescope D Ξ)) U))
;; (in-hole Φ ((apply-telescope P Ξ) x)))))
;; (where Φ (methods D (constructors-for D)))
;;
;; (methods D ()) = hole
;; (methods D ((c : (in-hole Ξ (in-hole Φ (in-hole Θ D)))) (c : e) ...)) =
;; (Π (m_i : (in-hole Ξ (in-hole Φ (in-hole Φ_1 ((in-hole Θ P) (apply-telescope (apply-telescope c Ξ) Φ))))))
; (methods D ((c : e) ...)))
;; (where Φ_1 (hypotheses D Φ))
;;
;; (hypotheses D hole) = hole
;; (hypotheses D (Π (x : (in-hole Φ (in-hole Θ D))) Φ_1)) =
;; (Π (h : (in-hole Φ ((in-hole Θ P) (apply-telescope x Φ))))
;; (hypotheses D Φ_1))
(define Σ0 (term ))
(define Σ2 Σ)