Fixed Coq generator to use eliminators
Not sure the resulting Coq code will actually type check, due to differences in the types of Cur eliminators and Coq eliminators.
This commit is contained in:
parent
3be6730b1e
commit
a0803eb8b1
11
oll.rkt
11
oll.rkt
|
@ -311,7 +311,7 @@
|
|||
(output-coq #'body)))
|
||||
"")]
|
||||
[(lambda ~! (x:id (~datum :) t) body:expr)
|
||||
(format "(fun ~a : ~a => ~a)" (syntax-e #'x) (output-coq #'t)
|
||||
(format "(fun ~a : ~a => ~a)" (output-coq #'x) (output-coq #'t)
|
||||
(output-coq #'body))]
|
||||
[(forall ~! (x:id (~datum :) t) body:expr)
|
||||
(format "(forall ~a : ~a, ~a)" (syntax-e #'x) (output-coq #'t)
|
||||
|
@ -336,7 +336,7 @@
|
|||
(output-coq #'P)
|
||||
(for/fold ([x ""])
|
||||
([m (syntax->list #'(m ...))])
|
||||
(format "~a ~a" (output-coq m)))
|
||||
(format "~a ~a" x (output-coq m)))
|
||||
(output-coq #'e))]
|
||||
[(real-app e1 e2)
|
||||
(format "(~a ~a)" (output-coq #'e1) (output-coq #'e2))]
|
||||
|
@ -378,14 +378,15 @@
|
|||
(meow g e t)]))
|
||||
(coq-defns))])
|
||||
(check-regexp-match
|
||||
"Inductive meow : \\(forall temp. : gamma, \\(forall temp. : term, \\(forall temp. : type, Type\\)\\)\\) :="
|
||||
"Inductive meow : \\(forall .+ : gamma, \\(forall .+ : term, \\(forall .+ : type, Type\\)\\)\\) :="
|
||||
(first (string-split t "\n")))
|
||||
(check-regexp-match
|
||||
"\\| T-Bla : \\(forall g : gamma, \\(forall e : term, \\(forall t : type, \\(\\(\\(meow g\\) e\\) t\\)\\)\\)\\)\\."
|
||||
(second (string-split t "\n"))))
|
||||
(let ([t (output-coq #'(case z (z z) (s (lambda (n : nat) (s n)))))])
|
||||
(let ([t (output-coq #'(elim nat e (lambda (x : nat) nat) z
|
||||
(lambda* (x : nat) (ih-x : nat) ih-x)))])
|
||||
(check-regexp-match
|
||||
"\\(match z with\n\\| \\(z\\) => z\n\\| \\(s .+\\) => \\(\\(fun n : nat => \\(s n\\)\\) .+\\)\nend\\)"
|
||||
"\\(nat_rect \\(fun x : nat => nat\\) z \\(fun x : nat => \\(fun ih_x : nat => ih_x\\)\\) e\\)"
|
||||
t))
|
||||
(check-regexp-match
|
||||
"Theorem thm_plus_commutes : \\(forall n : nat, \\(forall m : nat, \\(\\(\\(== nat\\) \\(\\(plus n\\) m\\)\\) \\(\\(plus m\\) n\\)\\)\\)\\).\n"
|
||||
|
|
Loading…
Reference in New Issue
Block a user