Reducing under Π, all elim tests pass
This commit is contained in:
parent
4290654cdd
commit
e600c32b77
|
@ -168,7 +168,11 @@
|
|||
(subst-all (subst t x_0 e_0) (x ...) (e ...))])
|
||||
|
||||
(define-extended-language cic-redL cicL
|
||||
(E ::= hole (v E) (E e) (Π (x : E) e)) ;; call-by-value
|
||||
;; call-by-value, plus reduce under Π (helps with typing checking)
|
||||
(E ::= hole (v E) (E e)
|
||||
(Π (x : (in-hole Θ x)) E)
|
||||
(Π (x : v) E)
|
||||
(Π (x : E) e))
|
||||
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
|
||||
(Σ ::= ∅ (Σ (x : t ((x : t) ...))))
|
||||
(Ξ Φ ::= hole (Π (x : t) Ξ)) ;;(Telescope)
|
||||
|
@ -334,15 +338,15 @@
|
|||
reduce : Σ e -> e
|
||||
[(reduce Σ e) e_r
|
||||
(where (_ e_r) ,(car (apply-reduction-relation* cic--> (term (Σ e)))))])
|
||||
;; TODO: Move equivalence up here, and use in these tests.
|
||||
(module+ test
|
||||
(check-equal? (term (reduce ∅ (Unv 0))) (term (Unv 0)))
|
||||
(check-equal? (term (reduce ∅ ((λ (x : t) x) (Unv 0)))) (term (Unv 0)))
|
||||
(check-equal? (term (reduce ∅ ((Π (x : t) x) (Unv 0)))) (term (Unv 0)))
|
||||
;; NB: Currently not reducing under binders. I forget why.
|
||||
(check-equal? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) x_0) (Unv 0)))))
|
||||
(term (Π (x : t) (Unv 0))))
|
||||
(check-equal? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
|
||||
(term (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
|
||||
(term (Π (x : t) (x x))))
|
||||
(check-equal? (term (reduce ,Σ ((((((elim nat) Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat)
|
||||
|
@ -814,16 +818,6 @@
|
|||
(nat-test ∅ s (Π (x : nat) nat))
|
||||
(nat-test ∅ (s zero) nat)
|
||||
;; TODO: Meta-function auto-currying and such
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(type-infer ,Σ ∅ (((elim nat) (Unv 0)) (λ (x : nat) nat)) t) t))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(type-infer ,Σ ∅ ((((elim nat) (Unv 0)) (λ (x : nat) nat)) zero) t) t))
|
||||
#;(Π (m-zero1 : ((λ (x : nat) nat) zero))
|
||||
(Π (m-s1 : (Π (x1 : nat) (Π (ih-x1 : ((λ (x : nat) nat) x1))
|
||||
((λ (x : nat) nat) (s x1)))))
|
||||
(Π (x3 : nat) ((λ (x : nat) nat) x3))))
|
||||
(check-holds
|
||||
(type-infer ,Σ ∅ (((((elim nat) (Unv 0)) (λ (x : nat) nat))
|
||||
zero)
|
||||
|
@ -834,7 +828,7 @@
|
|||
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||
zero)
|
||||
nat)
|
||||
(nat-test ∅ ((((((elim nat) (Unv 0)) (λ (x : nat) nat))
|
||||
(nat-test ∅ ((((((elim nat) (Unv 0)) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
zero)
|
||||
|
@ -911,13 +905,14 @@
|
|||
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
|
||||
(check-holds
|
||||
(type-check (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
(((((elim and) (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
true))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) tt)))))
|
||||
(((((((elim and) (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
true))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) tt)))))
|
||||
true) true)
|
||||
((((conj true) true) tt) tt))
|
||||
true))
|
||||
(check-true (Γ? (term (((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q)))))
|
||||
|
@ -947,14 +942,14 @@
|
|||
(check-holds
|
||||
(type-check ,Σ4
|
||||
(((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))
|
||||
(((((elim and) (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A)))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
ab)
|
||||
(((((((elim and) (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A)))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
P) Q) ab)
|
||||
((and Q) P)))
|
||||
(check-holds
|
||||
(type-check (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
|
@ -967,13 +962,14 @@
|
|||
t))
|
||||
(check-holds
|
||||
(type-check (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
(((((elim and) (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A)))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
(((((((elim and) (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A)))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
true) true)
|
||||
((((conj true) true) tt) tt))
|
||||
((and true) true)))
|
||||
(define gamma (term (∅ temp863 : pre)))
|
||||
|
@ -997,9 +993,10 @@
|
|||
(type-infer ,sigma (,gamma x : false) (λ (y : false) (Π (x : Type) x))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ false)) U))))
|
||||
(check-true
|
||||
(redex-match? cic-typingL ((in-hole Θ_m ((((elim x_D) U) e_P))) e_D)
|
||||
(term ((((elim false) (Unv 1)) (λ (y : false) (Π (x : Type) x)))
|
||||
x))))
|
||||
(redex-match? cic-typingL
|
||||
((in-hole Θ_m (((elim x_D) U) e_P)) e_D)
|
||||
(term ((((elim false) (Unv 1)) (λ (y : false) (Π (x : Type) x)))
|
||||
x))))
|
||||
(check-holds
|
||||
(type-check ,sigma (,gamma x : false)
|
||||
((((elim false) (Unv 0)) (λ (y : false) (Π (x : Type) x))) x)
|
||||
|
|
Loading…
Reference in New Issue
Block a user