Attempting to fix case typing checking
Maybe I shouldn't bother and should fix that after fixing inductives
This commit is contained in:
parent
9723870f14
commit
f8a51e65ca
|
@ -277,8 +277,9 @@
|
|||
|
||||
(define-metafunction cicL
|
||||
branch-type : t t t -> t
|
||||
[(branch-type t_ind (Π (x_0 : t) e_0) (Π (x_1 : t) e_1))
|
||||
(branch-type t_ind e_0 e_1)]
|
||||
[(branch-type t_ind (Π (x_0 : t_0) e_0) (Π (x_1 : t_1) e_1))
|
||||
(branch-type t_ind e_0 e_1)
|
||||
#;(side-condition (judgment-holds (equivalent t_0 t_1)))]
|
||||
;[(branch-type t_ind t_ind t) t])
|
||||
[(branch-type t_ind t_other t) t])
|
||||
(module+ test
|
||||
|
@ -293,7 +294,8 @@
|
|||
(define-metafunction cic-typingL
|
||||
branch-types-match : Σ (x ...) (t ...) t t -> #t or #f
|
||||
[(branch-types-match Σ (x ...) (t_11 ...) t t_1)
|
||||
,(andmap (curry equal? (term t)) (term ((branch-type t_1 (lookup Σ x) t_11) ...)))])
|
||||
,(andmap (lambda (x) (judgment-holds (equivalent ,x t)))
|
||||
(term ((branch-type t_1 (lookup Σ x) t_11) ...)))])
|
||||
(module+ test
|
||||
(check-true
|
||||
(term (branch-types-match ((∅ truth : (Unv 0)) T : truth) () () (Unv 0) nat)))
|
||||
|
@ -605,7 +607,14 @@
|
|||
(check-holds
|
||||
(type-infer ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1)))
|
||||
(check-holds
|
||||
(type-infer ,sigma (,gamma x : false) (case x) t))))
|
||||
(type-infer ,sigma (,gamma x : false) (case x) t))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(type-infer ,Σ4 ∅
|
||||
(λ (A3 : (Unv 0)) (λ (B3 : (Unv 0)) (λ (c1 : ((and A3) B3))
|
||||
(case c1
|
||||
(conj (λ (A1 : (Unv 0)) (λ (B1 : (Unv 0)) (λ (a1 : A1) (λ (b1 : B1) a1)))))))))
|
||||
t) t))))
|
||||
|
||||
;; This module just provide module language sugar over the redex model.
|
||||
|
||||
|
|
|
@ -37,7 +37,7 @@
|
|||
(case* ab
|
||||
((conj (P : Type) (Q : Type) (x : P) (y : Q)) (conj Q P y x)))))
|
||||
|
||||
(qed thm:and-is-symmetric proof:and-is-symmetric)
|
||||
#;(qed thm:and-is-symmetric proof:and-is-symmetric)
|
||||
|
||||
(define-theorem thm:proj1
|
||||
(forall* (A : Type) (B : Type) (c : (and A B)) A))
|
||||
|
|
Loading…
Reference in New Issue
Block a user