Added implementation of proofs for free extension

* Implemented the dual-mode extension to proofs for free, complete with
  a neat theorem.
This commit is contained in:
William J. Bowman 2014-07-28 18:25:42 +02:00
parent 58619df30b
commit ff4bd337fb

79
proofs-for-free-v2.rkt Normal file
View File

@ -0,0 +1,79 @@
#lang s-exp "redex-core.rkt"
(require rackunit)
;; TODO: Move to standard library
(define-syntax (-> syn)
(syntax-case syn ()
[(_ t1 t2)
(with-syntax ([(x) (generate-temporaries '(1))])
#'(forall (x : t1) t2))]))
(define-syntax ->*
(syntax-rules ()
[(->* a) a]
[(->* a a* ...)
(-> a (->* a* ...))]))
(define-syntax forall*
(syntax-rules (:)
[(_ (a : t) (ar : tr) ... b)
(forall (a : t)
(forall* (ar : tr) ... b))]
[(_ b) b]))
(define-syntax lambda*
(syntax-rules (:)
[(_ (a : t) (ar : tr) ... b)
(lambda (a : t)
(lambda* (ar : tr) ... b))]
[(_ b) b]))
(define-syntax-rule (define-theorem name prop)
(define (name (x : prop)) T))
(define-syntax-rule (qed thm pf)
(check-equal? T (thm pf)))
(define-syntax (define-type syn)
(syntax-case syn (:)
[(_ (name (x : t) ...) e)
#'(define name (forall* (x : t) ... e))]
[(_ id e)
#'(define id e)]))
;; ---------
(data true : Type (T : true))
(data false : Type)
(data equal : (forall* (A : Type) (B : Type) Type))
;; ---------
(define-syntax (translate syn)
(syntax-case syn (_t _v Type forall Unv lambda :)
[(_ _t Type)
#'(lambda* (x1 : Type) (x2 : Type) (->* x1 x2 Type))]
[(_ _v Type)
#'(lambda* (x1 : Type) (x2 : Type) (equal x1 x2))]
[(_ e (forall (x : A) B))
#'(lambda* (f1 : (forall (x : A) B)) (f2 : (forall (x : A) B))
(forall* (x1 : A) (x2 : A) (xr : ((translate _t A) x1 x2))
((translate e B) (f1 x1) (f2 x2))))]
[(_ e (lambda (x : A) B))
#'(lambda* (f1 : (forall (x : A) B)) (f2 : (forall (x : A) B))
(forall* (x1 : A) (x2 : A) (xr : ((translate _t A) x1 x2))
((translate e B) (f1 x1) (f2 x2))))]
[(_ e (f a))
;; Not sure this is quite right; probably need to rename a
#'((translate e f) a a (translate e a))]
[(_ e x)
;; Not sure this is quite right; Racket's hygiene might `save' me.
#'(xr)]
[_ (raise-syntax-error "translate undefined for" syn)]))
(define-theorem thm:type_t ((translate _t Type) Type Type))
(qed thm:type_t (translate _v Type))
(translate _v Type)
((translate _t Type) Type Type)
((translate _v Type) true false)