Added implementation of proofs for free extension
* Implemented the dual-mode extension to proofs for free, complete with a neat theorem.
This commit is contained in:
parent
58619df30b
commit
ff4bd337fb
79
proofs-for-free-v2.rkt
Normal file
79
proofs-for-free-v2.rkt
Normal file
|
@ -0,0 +1,79 @@
|
|||
#lang s-exp "redex-core.rkt"
|
||||
(require rackunit)
|
||||
|
||||
;; TODO: Move to standard library
|
||||
(define-syntax (-> syn)
|
||||
(syntax-case syn ()
|
||||
[(_ t1 t2)
|
||||
(with-syntax ([(x) (generate-temporaries '(1))])
|
||||
#'(forall (x : t1) t2))]))
|
||||
|
||||
(define-syntax ->*
|
||||
(syntax-rules ()
|
||||
[(->* a) a]
|
||||
[(->* a a* ...)
|
||||
(-> a (->* a* ...))]))
|
||||
|
||||
(define-syntax forall*
|
||||
(syntax-rules (:)
|
||||
[(_ (a : t) (ar : tr) ... b)
|
||||
(forall (a : t)
|
||||
(forall* (ar : tr) ... b))]
|
||||
[(_ b) b]))
|
||||
|
||||
(define-syntax lambda*
|
||||
(syntax-rules (:)
|
||||
[(_ (a : t) (ar : tr) ... b)
|
||||
(lambda (a : t)
|
||||
(lambda* (ar : tr) ... b))]
|
||||
[(_ b) b]))
|
||||
|
||||
(define-syntax-rule (define-theorem name prop)
|
||||
(define (name (x : prop)) T))
|
||||
|
||||
(define-syntax-rule (qed thm pf)
|
||||
(check-equal? T (thm pf)))
|
||||
|
||||
(define-syntax (define-type syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ (name (x : t) ...) e)
|
||||
#'(define name (forall* (x : t) ... e))]
|
||||
[(_ id e)
|
||||
#'(define id e)]))
|
||||
|
||||
;; ---------
|
||||
|
||||
(data true : Type (T : true))
|
||||
(data false : Type)
|
||||
(data equal : (forall* (A : Type) (B : Type) Type))
|
||||
|
||||
;; ---------
|
||||
|
||||
(define-syntax (translate syn)
|
||||
(syntax-case syn (_t _v Type forall Unv lambda :)
|
||||
[(_ _t Type)
|
||||
#'(lambda* (x1 : Type) (x2 : Type) (->* x1 x2 Type))]
|
||||
[(_ _v Type)
|
||||
#'(lambda* (x1 : Type) (x2 : Type) (equal x1 x2))]
|
||||
[(_ e (forall (x : A) B))
|
||||
#'(lambda* (f1 : (forall (x : A) B)) (f2 : (forall (x : A) B))
|
||||
(forall* (x1 : A) (x2 : A) (xr : ((translate _t A) x1 x2))
|
||||
((translate e B) (f1 x1) (f2 x2))))]
|
||||
[(_ e (lambda (x : A) B))
|
||||
#'(lambda* (f1 : (forall (x : A) B)) (f2 : (forall (x : A) B))
|
||||
(forall* (x1 : A) (x2 : A) (xr : ((translate _t A) x1 x2))
|
||||
((translate e B) (f1 x1) (f2 x2))))]
|
||||
[(_ e (f a))
|
||||
;; Not sure this is quite right; probably need to rename a
|
||||
#'((translate e f) a a (translate e a))]
|
||||
[(_ e x)
|
||||
;; Not sure this is quite right; Racket's hygiene might `save' me.
|
||||
#'(xr)]
|
||||
[_ (raise-syntax-error "translate undefined for" syn)]))
|
||||
|
||||
(define-theorem thm:type_t ((translate _t Type) Type Type))
|
||||
(qed thm:type_t (translate _v Type))
|
||||
(translate _v Type)
|
||||
((translate _t Type) Type Type)
|
||||
|
||||
((translate _v Type) true false)
|
Loading…
Reference in New Issue
Block a user