Compare commits

...

7 Commits

Author SHA1 Message Date
William J. Bowman
302d8014fa
Added TODO; Δ depends on order, but dict unordered 2016-01-11 19:25:31 -05:00
William J. Bowman
97a11ea253
Ported redex-core tests to hybrid-core & tested
* Ported the redex-core test-suite to hybrid-core. This test suite badly
  in need of abstraction.
* Tested and fixed the hybrid core; now runs
2016-01-11 19:04:36 -05:00
William J. Bowman
b318617f0e
Set hybrid-core to default; converted Δ to dict
* Hybrid core now used by default in this branch.
* Converted Δ to a Racket dictionary, started converting Δ abstractions
  to use dictionary.
2016-01-11 17:34:57 -05:00
William J. Bowman
c99b44bc09
Removed tests from hybrid-core
Tests are now in cur-test, so removed from hybrid-core
2016-01-11 17:34:57 -05:00
William J. Bowman
23d0cf3e6f
bla 2016-01-11 17:34:57 -05:00
William J. Bowman
c8f9f1c867
Added a TODO 2016-01-11 17:34:57 -05:00
William J. Bowman
0fd59566da
Started hybrid core 2016-01-11 17:34:57 -05:00
4 changed files with 1809 additions and 3 deletions

View File

@ -5,7 +5,7 @@
racket/syntax
syntax/parse
(for-template
(only-in "curnel/redex-lang.rkt"
(only-in "curnel/hybrid-lang.rkt"
cur-expand)))
(provide cur-match)
@ -17,7 +17,7 @@
[pattern body] ...)])))
(require
(rename-in "curnel/redex-lang.rkt" [provide -provide])
(rename-in "curnel/hybrid-lang.rkt" [provide -provide])
(only-in racket/base eof)
(for-syntax 'extra)
'extra)
@ -27,5 +27,5 @@
(except-out
(all-from-out
'extra
"curnel/redex-lang.rkt")
"curnel/hybrid-lang.rkt")
-provide))

View File

@ -0,0 +1,648 @@
#lang racket/base
;; A mostly Redex core, with parts written in Racket for performance reasons
(require
racket/dict
racket/function
racket/list
redex/reduction-semantics)
(provide
(all-defined-out))
(set-cache-size! 10000)
(define-language base
(dict ::= any))
;; TODO: More abstractions for Redex dictionaries.
(define make-dict make-immutable-hash)
#| ttL is the core language of Cur. Very similar to TT (Idirs core) and Luo's UTT. Surface
| langauge should provide short-hand, such as -> for non-dependent function types, and type
| inference.
|#
(define-extended-language ttL base
(i j k ::= natural)
(U ::= (Unv i))
(t e ::= U (λ (x : t) e) x (Π (x : t) t) (e e) (elim D U))
(Δ ::= dict)
(D x c ::= variable-not-otherwise-mentioned)
#:binding-forms
(λ (x : t) e #:refers-to x)
(Π (x : t_0) t_1 #:refers-to x))
(define x? (redex-match? ttL x))
(define t? (redex-match? ttL t))
(define e? (redex-match? ttL e))
(define U? (redex-match? ttL U))
;; TODO: Constracts
;; An inductive-decl contains the type of the type being declared,
;; a t?, and a dictionary of constructor names (x?) mapped to their
;; types (t?), the original syntax/order of the constructor
;; declaration ((x : t) ...), and the list of constructors in the
;; original order (x ...)
(define-struct inductive-decl (type constr-dict constr-decl constr-ls) #:prefab)
;; A Δ is a dict mapping names x? to inductive-decl?
(define Δ? dict?)
(define make-empty-Δ make-dict)
(define empty-Δ? dict-empty?)
;;; ------------------------------------------------------------------------
;;; Universe typing
(define-judgment-form ttL
#:mode (unv-type I O)
#:contract (unv-type U U)
[(where i_1 ,(add1 (term i_0)))
-----------------
(unv-type (Unv i_0) (Unv i_1))])
;; Universe predicativity rules. Impredicative in (Unv 0)
(define-judgment-form ttL
#:mode (unv-pred I I O)
#:contract (unv-pred U U U)
[----------------
(unv-pred (Unv i) (Unv 0) (Unv 0))]
[(where i_3 ,(max (term i_1) (term i_2)))
----------------
(unv-pred (Unv i_1) (Unv i_2) (Unv i_3))])
(define-metafunction ttL
α-equivalent? : t t -> #t or #f
[(α-equivalent? t_0 t_1)
,(alpha-equivalent? ttL (term t_0) (term t_1))])
;; Replace x by t_1 in t_0
(define-metafunction ttL
subst : t x t -> t
[(subst t_0 x t_1)
(substitute t_0 x t_1)])
(define-metafunction ttL
subst-all : t (x ...) (e ...) -> t
[(subst-all t () ()) t]
[(subst-all t (x_0 x ...) (e_0 e ...))
(subst-all (subst t x_0 e_0) (x ...) (e ...))])
;;; ------------------------------------------------------------------------
;;; Primitive Operations on signatures Δ (those operations that do not require contexts)
;; TODO: Maybe shouldn't fall back, but maintains redex-core interface.
;; Get the type of x as declared in Δ, as either a constructor or an inductive type
(define-metafunction ttL
Δ-ref-type : Δ x -> t or #f
[(Δ-ref-type Δ x)
,(cond
[(dict-ref (term Δ) (term x) (thunk #f))
=> inductive-decl-type]
[else (term (Δ-ref-constructor-type Δ foo x))])])
;; Get the type of a constructor x in the inductive declaration Δ
;; TODO: Doesn't need x_D anymore
(define-metafunction ttL
Δ-ref-constructor-type : Δ x x -> t or #f
[(Δ-ref-constructor-type Δ x_D x)
,(cond
[(for/or ([(D idecl) (in-dict (term Δ))])
(let ([constr-dict (inductive-decl-constr-dict idecl)])
(and (dict-has-key? constr-dict (term x)) constr-dict)))
=>
(curryr dict-ref (term x))]
[else #f])])
;; Add an inductive declaration to Δ
(define-metafunction ttL
Δ-set : Δ x t ((x : t) ...) -> Δ
[(Δ-set Δ x t (name decl ((c : t_c) ...)))
,(dict-set
(term Δ)
(term x)
(inductive-decl
(term t)
(for/fold ([d (make-dict)])
([constr-decl (term decl)])
(dict-set d (first constr-decl) (third constr-decl)))
(term decl)
(term (c ...))))])
;; Merge two inductive declarations
(define-metafunction ttL
Δ-union : Δ Δ -> Δ
[(Δ-union Δ_1 Δ_2)
,(for/fold ([d (term Δ_1)])
([(k v) (in-dict (term Δ_2))])
(dict-set d k v))])
(define-metafunction ttL
Δ-set* : Δ (x t ((x : t) ...)) ... -> Δ
[(Δ-set* Δ) Δ]
[(Δ-set* Δ (D t_D ((c : t_c) ...)) any_r ...)
(Δ-set* (Δ-set Δ D t_D ((c : t_c) ...)) any_r ...)])
;; Returns the inductively defined type that x constructs
(define-metafunction ttL
Δ-key-by-constructor : Δ x -> x or #f
[(Δ-key-by-constructor Δ x_c)
,(for/or ([(k v) (in-dict (term Δ))])
(and (dict-has-key? (inductive-decl-constr-dict v) (term x_c)) k))])
;; Returns the constructor map for the inductively defined type x_D in the signature Δ
(define-metafunction ttL
Δ-ref-constructor-map : Δ x -> ((x : t) ...) or #f
[(Δ-ref-constructor-map Δ x_D)
,(cond
[(dict-ref (term Δ) (term x_D) (thunk #f)) =>
inductive-decl-constr-decl]
[else #f])])
;; Get the list of constructors for the inducitvely defined type x_D
(define-metafunction ttL
Δ-ref-constructors : Δ x -> (x ...) or #f
[(Δ-ref-constructors Δ x_D)
,(inductive-decl-constr-ls (dict-ref (term Δ) (term x_D)))])
;; NB: Depends on clause order
(define-metafunction ttL
sequence-index-of : any (any ...) -> natural
[(sequence-index-of any_0 (any_0 any ...))
0]
[(sequence-index-of any_0 (any_1 any ...))
,(add1 (term (sequence-index-of any_0 (any ...))))])
;; Get the index of the constructor x_ci in the list of constructors for x_D
(define-metafunction ttL
Δ-constructor-index : Δ x x -> natural
[(Δ-constructor-index Δ x_D x_ci)
(sequence-index-of x_ci (Δ-ref-constructors Δ x_D))])
;;; ------------------------------------------------------------------------
;;; Operations that involve contexts.
(define-extended-language tt-ctxtL ttL
;; Telescope.
;; NB: There is a bijection between this an a vector of maps from x to t
(Ξ Φ ::= hole (Π (x : t) Ξ))
;; Apply context
;; NB: There is a bijection between this an a vector expressions
(Θ ::= hole (Θ e)))
(define Ξ? (redex-match? tt-ctxtL Ξ))
(define Φ? (redex-match? tt-ctxtL Φ))
(define Θ? (redex-match? tt-ctxtL Θ))
;; TODO: Might be worth it to actually maintain the above bijections, for performance reasons.
;; Return the parameters of x_D as a telescope Ξ
(define-metafunction tt-ctxtL
Δ-ref-parameter-Ξ : Δ x -> Ξ
[(Δ-ref-parameter-Ξ Δ x_D)
Ξ
(where (in-hole Ξ U) (Δ-ref-type Δ x_D))])
;; Applies the term t to the telescope Ξ.
;; TODO: Test
#| TODO:
| This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true
| that (equivalent t (Ξ-apply Ξ t))?
| Maybe not. t is a lambda whose type is equivalent to (Ξ-apply Ξ t)? Yes.
|#
(define-metafunction tt-ctxtL
Ξ-apply : Ξ t -> t
[(Ξ-apply hole t) t]
[(Ξ-apply (Π (x : t) Ξ) t_0) (Ξ-apply Ξ (t_0 x))])
;; Compose multiple telescopes into a single telescope:
(define-metafunction tt-ctxtL
Ξ-compose : Ξ Ξ ... -> Ξ
[(Ξ-compose Ξ) Ξ]
[(Ξ-compose Ξ_0 Ξ_1 Ξ_rest ...)
(Ξ-compose (in-hole Ξ_0 Ξ_1) Ξ_rest ...)])
;; Compute the number of arguments in a Ξ
(define-metafunction tt-ctxtL
Ξ-length : Ξ -> natural
[(Ξ-length hole) 0]
[(Ξ-length (Π (x : t) Ξ)) ,(add1 (term (Ξ-length Ξ)))])
;; Compute the number of applications in a Θ
(define-metafunction tt-ctxtL
Θ-length : Θ -> natural
[(Θ-length hole) 0]
[(Θ-length (Θ e)) ,(add1 (term (Θ-length Θ)))])
;; Reference an expression in Θ by index; index 0 corresponds to the the expression applied to a hole.
(define-metafunction tt-ctxtL
Θ-ref : Θ natural -> e or #f
[(Θ-ref hole natural) #f]
[(Θ-ref (in-hole Θ (hole e)) 0) e]
[(Θ-ref (in-hole Θ (hole e)) natural) (Θ-ref Θ ,(sub1 (term natural)))])
;;; ------------------------------------------------------------------------
;;; Computing the types of eliminators
;; Returns the telescope of the arguments for the constructor x_ci of the inductively defined type x_D
(define-metafunction tt-ctxtL
Δ-constructor-telescope : Δ x x -> Ξ
[(Δ-constructor-telescope Δ x_D x_ci)
Ξ
(where (in-hole Ξ (in-hole Θ x_D))
(Δ-ref-constructor-type Δ x_D x_ci))])
;; Returns the parameter arguments as an apply context of the constructor x_ci of the inductively
;; defined type x_D
(define-metafunction tt-ctxtL
Δ-constructor-parameters : Δ x x -> Θ
[(Δ-constructor-parameters Δ x_D x_ci)
Θ
(where (in-hole Ξ (in-hole Θ x_D))
(Δ-ref-constructor-type Δ x_D x_ci))])
;; Inner loop for Δ-constructor-noninductive-telescope
(define-metafunction tt-ctxtL
noninductive-loop : x Φ -> Φ
[(noninductive-loop x_D hole) hole]
[(noninductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))
(noninductive-loop x_D Φ_1)]
[(noninductive-loop x_D (Π (x : t) Φ_1))
(Π (x : t) (noninductive-loop x_D Φ_1))])
;; Returns the noninductive arguments to the constructor x_ci of the inductively defined type x_D
(define-metafunction tt-ctxtL
Δ-constructor-noninductive-telescope : Δ x x -> Ξ
[(Δ-constructor-noninductive-telescope Δ x_D x_ci)
(noninductive-loop x_D (Δ-constructor-telescope Δ x_D x_ci))])
;; Inner loop for Δ-constructor-inductive-telescope
;; NB: Depends on clause order
(define-metafunction tt-ctxtL
inductive-loop : x Φ -> Φ
[(inductive-loop x_D hole) hole]
[(inductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))
(Π (x : (in-hole Φ (in-hole Θ x_D))) (inductive-loop x_D Φ_1))]
[(inductive-loop x_D (Π (x : t) Φ_1))
(inductive-loop x_D Φ_1)])
;; Returns the inductive arguments to the constructor x_ci of the inducitvely defined type x_D
(define-metafunction tt-ctxtL
Δ-constructor-inductive-telescope : Δ x x -> Ξ
[(Δ-constructor-inductive-telescope Δ x_D x_ci)
(inductive-loop x_D (Δ-constructor-telescope Δ x_D x_ci))])
;; Returns the inductive hypotheses required for eliminating the inductively defined type x_D with
;; motive t_P, where the telescope Φ are the inductive arguments to a constructor for x_D
(define-metafunction tt-ctxtL
hypotheses-loop : x t Φ -> Φ
[(hypotheses-loop x_D t_P hole) hole]
[(hypotheses-loop x_D t_P (name any_0 (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)))
;; TODO: Instead of this nonsense, it might be simpler to pass in the type of t_P and use that
;; as/to compute the type of the hypothesis.
(Π (x_h : (in-hole Φ ((in-hole Θ t_P) (Ξ-apply Φ x))))
(hypotheses-loop x_D t_P Φ_1))
(where x_h ,(variable-not-in (term (x_D t_P any_0)) 'x-ih))])
;; Returns the inductive hypotheses required for the elimination method of constructor x_ci for
;; inductive type x_D, when eliminating with motive t_P.
(define-metafunction tt-ctxtL
Δ-constructor-inductive-hypotheses : Δ x x t -> Ξ
[(Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P)
(hypotheses-loop x_D t_P (Δ-constructor-inductive-telescope Δ x_D x_ci))])
(define-metafunction tt-ctxtL
Δ-constructor-method-telescope : Δ x x t -> Ξ
[(Δ-constructor-method-telescope Δ x_D x_ci t_P)
(Π (x_mi : (in-hole Ξ_a (in-hole Ξ_h ((in-hole Θ_p t_P) (Ξ-apply Ξ_a x_ci)))))
hole)
(where Θ_p (Δ-constructor-parameters Δ x_D x_ci))
(where Ξ_a (Δ-constructor-telescope Δ x_D x_ci))
(where Ξ_h (Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P))
(where x_mi ,(variable-not-in (term (t_P Δ)) 'x-mi))])
;; fold Ξ-compose over map Δ-constructor-method-telescope over the list of constructors
(define-metafunction tt-ctxtL
method-loop : Δ x t (x ...) -> Ξ
[(method-loop Δ x_D t_P ()) hole]
[(method-loop Δ x_D t_P (x_0 x_rest ...))
(Ξ-compose (Δ-constructor-method-telescope Δ x_D x_0 t_P) (method-loop Δ x_D t_P (x_rest ...)))])
;; Returns the telescope of all methods required to eliminate the type x_D with motive t_P
(define-metafunction tt-ctxtL
Δ-methods-telescope : Δ x t -> Ξ
[(Δ-methods-telescope Δ x_D t_P)
(method-loop Δ x_D t_P (Δ-ref-constructors Δ x_D))])
;; Computes the type of the eliminator for the inductively defined type x_D with a motive whose result
;; is in universe U.
;;
;; The type of (elim x_D U) is something like:
;; (∀ (P : (∀ a -> ... -> (D a ...) -> U))
;; (method_ci ...) -> ... ->
;; (a -> ... -> (D a ...) ->
;; (P a ... (D a ...))))
;;
;; x_D is an inductively defined type
;; U is the sort the motive
;; x_P is the name of the motive
;; Ξ_P*D is the telescope of the parameters of x_D and
;; the witness of type x_D (applied to the parameters)
;; Ξ_m is the telescope of the methods for x_D
(define-metafunction tt-ctxtL
Δ-elim-type : Δ x U -> t
[(Δ-elim-type Δ x_D U)
(Π (x_P : (in-hole Ξ_P*D U))
;; The methods Ξ_m for each constructor of type x_D
(in-hole Ξ_m
;; And finally, the parameters and discriminant
(in-hole Ξ_P*D
;; The result is (P a ... (x_D a ...)), i.e., the motive
;; applied to the paramters and discriminant
(Ξ-apply Ξ_P*D x_P))))
;; Get the parameters of x_D
(where Ξ (Δ-ref-parameter-Ξ Δ x_D))
;; A fresh name to bind the discriminant
(where x ,(variable-not-in (term (Δ Γ x_D Ξ)) 'x-D))
;; The telescope (∀ a -> ... -> (D a ...) hole), i.e.,
;; of the parameters and the inductive type applied to the
;; parameters
(where Ξ_P*D (in-hole Ξ (Π (x : (Ξ-apply Ξ x_D)) hole)))
;; A fresh name for the motive
(where x_P ,(variable-not-in (term (Δ Γ x_D Ξ Ξ_P*D x)) 'x-P))
;; The types of the methods for this inductive.
(where Ξ_m (Δ-methods-telescope Δ x_D x_P))])
;; TODO: This might belong in the next section, since it's related to evaluation
;; Generate recursive applications of the eliminator for each inductive argument of type x_D.
;; In more detaill, given motive t_P, parameters Θ_p, methods Θ_m, and arguments Θ_i to constructor
;; x_ci for x_D, for each inductively smaller term t_i of type (in-hole Θ_p x_D) inside Θ_i,
;; generate: (elim x_D U t_P Θ_m ... Θ_p ... t_i)
(define-metafunction tt-ctxtL
Δ-inductive-elim : Δ x U t Θ Θ Θ -> Θ
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m (in-hole Θ_i (hole (name t_i (in-hole Θ_r x_ci)))))
((Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_i)
(in-hole ((in-hole Θ_p Θ_m) t_i) ((elim x_D U) t_P)))
(side-condition (memq (term x_ci) (term (Δ-ref-constructors Δ x_D))))]
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_nr) hole])
;;; ------------------------------------------------------------------------
;;; Dynamic semantics
;;; The majority of this section is dedicated to evaluation of (elim x U), the eliminator for the
;;; inductively defined type x with a motive whose result is in universe U
(define-extended-language tt-redL tt-ctxtL
;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim. However,
;; determining whether or not it is partially applied cannot be done with the grammar alone.
(v ::= x U (Π (x : t) t) (λ (x : t) t) (elim x U) (in-hole Θv x) (in-hole Θv (elim x U)))
(Θv ::= hole (Θv v))
;; call-by-value, plus reduce under Π (helps with typing checking)
(E ::= hole (E e) (v E) (Π (x : v) E) (Π (x : E) e)))
(define Θv? (redex-match? tt-redL Θv))
(define E? (redex-match? tt-redL E))
(define v? (redex-match? tt-redL v))
(define current-Δ (make-parameter (make-empty-Δ)))
(define tt-->
(reduction-relation tt-redL
(--> (in-hole E ((λ (x : t_0) t_1) t_2))
(in-hole E (subst t_1 x t_2))
-->β)
(--> (in-hole E (in-hole Θv ((elim x_D U) v_P)))
(in-hole E (in-hole Θ_r (in-hole Θv_i v_mi)))
#|
| The elim form must appear applied like so:
| (elim x_D U v_P m_0 ... m_i m_j ... m_n p ... (c_i a ...))
|
| Where:
| x_D is the inductive being eliminated
| U is the universe of the result of the motive
| v_P is the motive
| m_{0..n} are the methods
| p ... are the parameters of x_D
| c_i is a constructor of x_d
| a ... are the arguments to c_i
| Unfortunately, Θ contexts turn all this inside out:
| TODO: Write better abstractions for this notation
|#
(where Δ ,(current-Δ))
;; Split Θv into its components: the paramters Θv_P for x_D, the methods Θv_m for x_D, and
;; the discriminant: the constructor x_ci applied to its argument Θv_i
(where (in-hole (Θv_p (in-hole Θv_i x_ci)) Θv_m) Θv)
;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other
;; arguments.
(side-condition (equal? (term (Θ-length Θv_p)) (term (Ξ-length (Δ-ref-parameter-Ξ Δ x_D)))))
;; Ensure x_ci is actually a constructor for x_D
(where (x_c* ...) (Δ-ref-constructors Δ x_D))
(side-condition (memq (term x_ci) (term (x_c* ...))))
;; There should be a number of methods equal to the number of constructors; to ensure E
;; doesn't capture methods and Θv_m doesn't capture other arguments
(side-condition (equal? (length (term (x_c* ...))) (term (Θ-length Θv_m))))
;; Find the method for constructor x_ci, relying on the order of the arguments.
(where v_mi (Θ-ref Θv_m (Δ-constructor-index Δ x_D x_ci)))
;; Generate the inductive recursion
(where Θ_r (Δ-inductive-elim Δ x_D U v_P Θv_p Θv_m Θv_i))
-->elim)))
(define reduce-memoize (make-hash))
(define-metafunction tt-redL
step : Δ e -> e
[(step Δ e)
e_r
(where e_r ,(dict-ref reduce-memoize (term e)
(thunk
(parameterize ([current-Δ (term Δ)])
(let ([x (car (apply-reduction-relation tt--> (term e)))])
(dict-set! reduce-memoize (term e_r) x)
x)))))])
(define-metafunction tt-redL
reduce : Δ e -> e
[(reduce Δ e)
e_r
(where e_r ,(dict-ref reduce-memoize (term e)
(thunk
(parameterize ([current-Δ (term Δ)])
(let ([x (car (apply-reduction-relation* tt--> (term e) #:cache-all? #t))])
(dict-set! reduce-memoize (term e_r) x)
x)))))])
(define-judgment-form tt-redL
#:mode (equivalent I I I)
#:contract (equivalent Δ t t)
[(where t_2 (reduce Δ t_0))
(where t_3 (reduce Δ t_1))
(side-condition (α-equivalent? t_2 t_3))
----------------- "≡-αβ"
(equivalent Δ t_0 t_1)])
;;; ------------------------------------------------------------------------
;;; Type checking and synthesis
(define-extended-language tt-typingL tt-redL
;; NB: There may be a bijection between Γ and Ξ. That's interesting.
;; NB: Also a bijection between Γ and a list of maps from x to t.
(Γ ::= (Γ x : t)))
(define Γ? (redex-match? tt-typingL Γ))
(define-metafunction tt-typingL
Γ-union : Γ Γ -> Γ
[(Γ-union Γ ) Γ]
[(Γ-union Γ_2 (Γ_1 x : t))
((Γ-union Γ_2 Γ_1) x : t)])
(define-metafunction tt-typingL
Γ-set : Γ x t -> Γ
[(Γ-set Γ x t) (Γ x : t)])
;; NB: Depends on clause order
(define-metafunction tt-typingL
Γ-ref : Γ x -> t or #f
[(Γ-ref x) #f]
[(Γ-ref (Γ x : t) x) t]
[(Γ-ref (Γ x_0 : t_0) x_1) (Γ-ref Γ x_1)])
;; NB: Depends on clause order
(define-metafunction tt-typingL
Γ-remove : Γ x -> Γ
[(Γ-remove x) ]
[(Γ-remove (Γ x : t) x) Γ]
[(Γ-remove (Γ x_0 : t_0) x_1) (Γ-remove Γ x_1)])
(define-metafunction tt-typingL
nonpositive : x t -> #t or #f
[(nonpositive x (in-hole Θ x))
#t]
[(nonpositive x (Π (x_0 : (in-hole Θ x)) t))
#f]
[(nonpositive x (Π (x_0 : t_0) t))
,(and (term (positive x t_0)) (term (nonpositive x t)))]
[(nonpositive x t) #t])
(define-metafunction tt-typingL
positive : x t -> #t or #f
[(positive x (in-hole Θ x))
#f]
[(positive x (Π (x_0 : (in-hole Θ x)) t))
(positive x t)]
[(positive x (Π (x_0 : t_0) t))
,(and (term (nonpositive x t_0)) (term (positive x t)))]
[(positive x t) #t])
(define-metafunction tt-typingL
positive* : x (t ...) -> #t or #f
[(positive* x_D ()) #t]
[(positive* x_D (t_c t_rest ...))
;; Replace the result of the constructor with (Unv 0), to avoid the result being considered a
;; nonpositive position.
,(and (term (positive x_D (in-hole Ξ (Unv 0)))) (term (positive* x_D (t_rest ...))))
(where (in-hole Ξ (in-hole Θ x_D)) t_c)])
;; Holds when the signature Δ and typing context Γ are well-formed.
(define-judgment-form tt-typingL
#:mode (wf I I)
#:contract (wf Δ Γ)
[(side-condition ,(empty-Δ? (term Δ)))
----------------- "WF-Empty"
(wf Δ )]
[(type-infer Δ Γ t t_0)
(wf Δ Γ)
----------------- "WF-Var"
(wf Δ (Γ x : t))]
[(side-condition ,(not (empty-Δ? (term Δ_1))))
;; TODO: Depends on order, but "first" here is nondeterministic/unspecified
(where x_D ,(dict-iterate-key (term Δ_1) (dict-iterate-first (term Δ_1))))
(where t_D (Δ-ref-type Δ_1 x_D))
(where (x_c ...) (Δ-ref-constructors Δ_1 x_D))
(where ((name t_c (in-hole Ξ (in-hole Θ x_D*))) ...)
((Δ-ref-type Δ_1 x_c) ...))
(where Δ ,(dict-remove (term Δ_1) (term x_D)))
(wf Δ )
(type-infer Δ t_D U_D)
(type-infer Δ ( x_D : t_D) t_c U_c) ...
;; NB: Ugh this should be possible with pattern matching alone ....
(side-condition ,(map (curry equal? (term x_D)) (term (x_D* ...))))
(side-condition (positive* x_D (t_c ...)))
----------------- "WF-Inductive"
(wf Δ_1 )])
;; TODO: Bi-directional and inference?
;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
;; Holds when e has type t under signature Δ and typing context Γ
(define-judgment-form tt-typingL
#:mode (type-infer I I I O)
#:contract (type-infer Δ Γ e t)
[(wf Δ Γ)
(unv-type U_0 U_1)
----------------- "DTR-Unv"
(type-infer Δ Γ U_0 U_1)]
[(wf Δ Γ)
(where t (Δ-ref-type Δ x))
----------------- "DTR-Inductive"
(type-infer Δ Γ x t)]
[(wf Δ Γ)
(where t (Γ-ref Γ x))
----------------- "DTR-Start"
(type-infer Δ Γ x t)]
[(type-infer Δ (Γ x : t_0) e t_1)
(type-infer Δ Γ (Π (x : t_0) t_1) U)
----------------- "DTR-Abstraction"
(type-infer Δ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
[(type-infer Δ Γ t_0 U_1)
(type-infer Δ (Γ x : t_0) t U_2)
(unv-pred U_1 U_2 U)
----------------- "DTR-Product"
(type-infer Δ Γ (Π (x : t_0) t) U)]
[(type-infer Δ Γ e_0 t)
;; Cannot rely on type-infer producing normal forms.
(where (Π (x_0 : t_0) t_1) (reduce Δ t))
(type-check Δ Γ e_1 t_0)
(where t_3 (subst t_1 x_0 e_1))
----------------- "DTR-Application"
(type-infer Δ Γ (e_0 e_1) t_3)]
[(where t (Δ-elim-type Δ D U))
(type-infer Δ Γ t U_e)
----------------- "DTR-Elim_D"
(type-infer Δ Γ (elim D U) t)])
(define-judgment-form tt-typingL
#:mode (type-check I I I I)
#:contract (type-check Δ Γ e t)
[(type-infer Δ Γ e t_0)
(equivalent Δ t t_0)
----------------- "DTR-Check"
(type-check Δ Γ e t)])
(module+ test
(require rackunit)
(define-term Δt (Δ-set ,(make-empty-Δ) True (Unv 0) ((T : True))))
(check-false
(judgment-holds (type-check ,(make-empty-Δ) T True)))
(check-true
(judgment-holds (type-check Δt T True)))
(check-true
(judgment-holds (type-check Δt True (Unv 0))))
(check-true
(judgment-holds (wf Δt )))
(check-true
(judgment-holds (wf Δt ( P : (Unv 0)))))
(check-true
(judgment-holds (type-infer Δt (Π (P : (Unv 0)) True) t))))

View File

@ -0,0 +1,493 @@
#lang racket/base
;; This module just provide module language sugar over the redex model.
(require
"hybrid-core.rkt"
redex/reduction-semantics
racket/provide-syntax
(for-syntax
(except-in racket import)
syntax/parse
racket/syntax
(except-in racket/provide-transform export)
racket/require-transform
"hybrid-core.rkt"
redex/reduction-semantics))
(provide
;; Basic syntax
for-syntax
only-in
except-in
all-defined-out
rename-in
rename-out
prefix-out
prefix-in
submod
#%module-begin
(rename-out
[dep-module+ module+]
[dep-provide provide]
[dep-require require]
[dep-lambda lambda]
[dep-lambda λ]
[dep-app #%app]
[dep-forall forall]
[dep-forall ]
[dep-inductive data]
[dep-elim elim]
[dep-top #%top]
[dep-top-interaction #%top-interaction]
; [dep-datum #%datum]
[dep-define define]
[dep-void void])
begin
Type
;; DYI syntax extension
define-syntax
begin-for-syntax
define-for-syntax
syntax-case
syntax-rules
define-syntax-rule
(for-syntax
(all-from-out syntax/parse)
(all-from-out racket)
(all-from-out racket/syntax)
cur->datum
cur-expand
type-infer/syn
type-check/syn?
normalize/syn
step/syn
cur-equal?))
(begin-for-syntax
;; TODO: Gamma and Delta seem to get reset inside a module+
(define gamma
(make-parameter
(term )
(lambda (x)
(unless (Γ? x)
(error 'core-error "We built a bad term environment ~s" x))
x)))
(define delta
(make-parameter
(make-empty-Δ)
(lambda (x)
(unless (Δ? x)
(error 'core-error "We built a bad inductive declaration ~s" x))
x)))
;; These should be provided by core, so details of envs can be hidden.
(define (extend-Γ/term env x t)
(term (Γ-set ,(env) ,x ,t)))
(define (extend-Γ/term! env x t) (env (extend-Γ/term env x t)))
(define (extend-Γ/syn env x t)
(extend-Γ/term env (syntax->datum x) (cur->datum t)))
(define (extend-Γ/syn! env x t) (env (extend-Γ/syn env x t)))
(define (extend-Δ/term env x t c*)
(term (Δ-set ,(env) ,x ,t (,@c*))))
(define (extend-Δ/term! env x t c*)
(env (extend-Δ/term env x t c*)))
(define (extend-Δ/syn env x t c*)
(extend-Δ/term env (syntax->datum x) (cur->datum t)
(for/list ([c (syntax->list c*)])
(syntax-case c ()
[(c : ct)
(parameterize ([gamma (extend-Γ/syn gamma x t)])
(term (,(syntax->datum #'c) : ,(cur->datum #'ct))))]))))
(define (extend-Δ/syn! env x t c*)
(env (extend-Δ/syn env x t c*)))
(define subst? (list/c (listof x?) (listof e?)))
(define bind-subst
(make-parameter
(list null null)
(lambda (x)
(unless (subst? x)
(error 'core-error "We build a bad subst ~s" x))
x)))
(define (add-binding/term! x t)
(let ([vars (first (bind-subst))]
[exprs (second (bind-subst))])
(bind-subst (list (cons x vars) (cons t exprs)))))
(define (subst-bindings t)
(term (subst-all ,t ,(first (bind-subst)) ,(second (bind-subst)))))
(define (type-infer/term t)
(let ([t (judgment-holds (type-infer ,(delta) ,(gamma) ,(subst-bindings t) t_0) t_0)])
(and (pair? t) (car t))))
(define (type-check/term? e t)
(and (judgment-holds (type-check ,(delta) ,(gamma) ,(subst-bindings e) ,(subst-bindings t))) #t))
;; TODO: Blanket disarming is probably a bad idea.
(define orig-insp (variable-reference->module-declaration-inspector (#%variable-reference)))
(define (disarm syn) (syntax-disarm syn orig-insp))
;; Locally expand everything down to core forms.
(define (core-expand syn)
(disarm
(local-expand
syn
'expression
(append (syntax-e #'(term reduce subst-all dep-top #%app λ Π elim Unv #%datum void))))))
;; Only type-check at the top-level, to prevent exponential
;; type-checking. Redex is expensive enough.
(define inner-expand? (make-parameter #f))
;; Reifiy cur syntax into curnel datum
(define (cur->datum syn)
;; Main loop; avoid type
(define reified-term
;; TODO: This results in less good error messages. Add an
;; algorithm to find the smallest ill-typed term.
(parameterize ([inner-expand? #t])
(let cur->datum ([syn syn])
(syntax-parse (core-expand syn)
#:literals (term reduce #%app subst-all)
#:datum-literals (elim Π λ : Unv)
[x:id (syntax->datum #'x)]
[(subst-all e _ _) (syntax->datum #'e)]
[(reduce Δ e) (cur->datum #'e)]
[(term e) (cur->datum #'e)]
[(Unv i) (term (Unv ,(syntax->datum #'i)))]
;; TODO: should really check that b is one of the binders
;; Maybe make a syntax class for the binders, core forms,
;; etc.
[(b:id (x:id : t) e)
(let* ([x (syntax->datum #'x)]
[t (cur->datum #'t)]
[e (parameterize ([gamma (extend-Γ/term gamma x t)])
(cur->datum #'e))])
(term (,(syntax->datum #'b) (,x : ,t) ,e)))]
[(elim t1 t2)
(let* ([t1 (cur->datum #'t1)]
[t2 (cur->datum #'t2)])
(term (elim ,t1 ,t2)))]
[(#%app e1 e2)
(term (,(cur->datum #'e1) ,(cur->datum #'e2)))]))))
(unless (or (inner-expand?) (type-infer/term reified-term))
(printf "Delta: ~s~nGamma: ~s~n" (delta) (gamma))
(raise-syntax-error 'cur "term is ill-typed:" reified-term syn))
reified-term)
(define (datum->cur syn t)
(match t
[(list (quote term) e)
(quasisyntax/loc
syn
(datum->cur syn e))]
[(list (quote Unv) i)
(quasisyntax/loc
syn
(Type #,i))]
[(list (quote Π) (list x (quote :) t) body)
(quasisyntax/loc
syn
(dep-forall (#,(datum->syntax syn x) : #,(datum->cur syn t)) #,(datum->cur syn body)))]
[(list (quote λ) (list x (quote :) t) body)
(quasisyntax/loc
syn
(dep-lambda (#,(datum->syntax syn x) : #,(datum->cur syn t)) #,(datum->cur syn body)))]
[(list (list (quote elim) t1) t2)
(quasisyntax/loc
syn
(dep-elim #,(datum->cur syn t1) #,(datum->cur syn t2)))]
[(list e1 e2)
(quasisyntax/loc
syn
(dep-app #,(datum->cur syn e1) #,(datum->cur syn e2)))]
[_
(quasisyntax/loc
syn
#,(datum->syntax syn t))]))
(define (eval-cur syn)
(term (reduce ,(delta) ,(subst-bindings (cur->datum syn)))))
(define (syntax->curnel-syntax syn)
(quasisyntax/loc
syn
;; TODO: this subst-all should be #,(subst-bindings (cur->datum syn)), but doesn't work
(term (reduce #,(delta) (subst-all #,(cur->datum syn) #,(first (bind-subst)) #,(second (bind-subst)))))))
;; Reflection tools
(define (normalize/syn syn)
(datum->cur
syn
(eval-cur syn)))
(define (step/syn syn)
(datum->cur
syn
(term (step ,(delta) ,(subst-bindings (cur->datum syn))))))
;; Are these two terms equivalent in type-systems internal equational reasoning?
(define (cur-equal? e1 e2)
(and (judgment-holds (equivalent ,(delta) ,(eval-cur e1) ,(eval-cur e2))) #t))
;; TODO: Document local-env
(define (type-infer/syn syn #:local-env [env '()])
(parameterize ([gamma (for/fold ([gamma (gamma)])
([(x t) (in-dict env)])
(extend-Γ/syn (thunk gamma) x t))])
(let ([t (type-infer/term (eval-cur syn))])
(and t (datum->cur syn t)))))
(define (type-check/syn? syn type)
(type-check/term? (eval-cur syn) (eval-cur type)))
;; Takes a Cur term syn and an arbitrary number of identifiers ls. The cur term is
;; expanded until expansion reaches a Curnel form, or one of the
;; identifiers in ls.
(define (cur-expand syn . ls)
(disarm
(local-expand
syn
'expression
(append (syntax-e #'(Type dep-inductive dep-lambda dep-app dep-elim dep-forall dep-top))
ls)))))
;; -----------------------------------------------------------------
;; Require/provide macros
#| TODO NB XXX
| This is code some of the most hacky awful code I've ever written. But it works. ish
|#
(begin-for-syntax
(define envs (list #'(void)))
(define (cur-identifier-bound? id)
(let ([x (syntax->datum id)])
(and (x? x)
(or (term (Γ-ref ,(gamma) ,x))
(term (Δ-ref-type ,(delta) ,x))))))
(define (filter-cur-exports syn modes)
(partition (compose cur-identifier-bound? export-local-id)
(apply append (map (lambda (e) (expand-export e modes))
(syntax->list syn))))))
(define-syntax extend-env-and-provide
(make-provide-transformer
(lambda (syn modes)
(syntax-case syn ()
[(_ e ...)
(let-values ([(cur ~cur) (filter-cur-exports #'(e ...) modes)])
#| TODO: Ignoring the built envs for now
(set! envs (for/list ([e cur])
(let* ([x (syntax->datum (export-local-id e))]
[t (type-infer/term x)]
[env (if (term (lookup ,(gamma) ,x)) #'gamma #'delta)])
#`(extend-env/term! #,env #,(export-out-sym e) #,t))))
|#
~cur)]))))
(define-syntax (export-envs syn)
(syntax-case syn ()
[(_ gamma-out delta-out bind-out)
(begin
#`(begin-for-syntax
(define gamma-out (term #,(gamma)))
(define delta-out (term #,(delta)))
(define bind-out '#,(bind-subst))))]))
;; TODO: This can only handle a single provide form, otherwise generates multiple *-out
(define-syntax (dep-provide syn)
(syntax-case syn ()
[(_ e ...)
(begin
#| TODO NB:
| Ignoring the built envs above, for now. The local-lift export seems to get executed before
| the filtered environment is built.
|#
;; TODO: rename out will need to rename variables in gamma and ; delta.
(syntax-local-lift-module-end-declaration
#`(export-envs gamma-out delta-out bind-out))
#`(provide (extend-env-and-provide e ...)
(for-syntax gamma-out delta-out bind-out)))]))
(begin-for-syntax
(define out-gammas #`())
(define out-deltas #`())
(define out-binds #`())
(define gn 0)
(define sn 0)
(define bn 0)
(define (filter-cur-imports syn)
(for/fold ([imports '()]
[sources '()])
([req-spec (syntax->list syn)])
(let-values ([(more-imports more-sources) (expand-import req-spec)])
(values (for/fold ([imports imports])
([imp more-imports])
(cond
[(equal? (import-src-sym imp) 'gamma-out)
(let ([new-id (format-id (import-orig-stx imp)
"gamma-out~a" gn)])
;; TODO: Fewer set!s
;; TODO: Do not DIY gensym
(set! gn (add1 gn))
(set! out-gammas
#`(#,@out-gammas (gamma (term (Γ-union
,(gamma)
,#,new-id)))))
(cons (struct-copy import imp [local-id new-id])
imports))]
;; TODO: Many shared code between these two clauses
[(equal? (import-src-sym imp) 'delta-out)
(let ([new-id (format-id (import-orig-stx imp)
"delta-out~a" sn)])
;; TODO: Fewer set!s
;; TODO: Do not DIY gensym
(set! sn (add1 sn))
(set! out-deltas
#`(#,@out-deltas (delta (term (Δ-union
,(delta)
,#,new-id)))))
(cons (struct-copy import imp [local-id new-id])
imports))]
;; TODO: Many shared code between these two clauses
[(equal? (import-src-sym imp) 'bind-out)
(let ([new-id (format-id (import-orig-stx imp)
"bind-out~a" bn)])
;; TODO: Fewer set!s
;; TODO: Do not DIY gensym
(set! bn (add1 bn))
(set! out-binds
#`(#,@out-binds (bind-subst (list (append
(first #,new-id)
(first (bind-subst)))
(append
(second #,new-id)
(second (bind-subst)))))))
(cons (struct-copy import imp [local-id new-id])
imports))]
[else (cons imp imports)]))
(append sources more-sources))))))
(define-syntax extend-env-and-require
(make-require-transformer
(lambda (syn)
(syntax-case syn ()
[(_ e ...) (filter-cur-imports #'(e ...))]))))
;; TODO: rename in will need to rename variables in gamma and delta.
(define-syntax (import-envs syn)
(syntax-case syn ()
[(_) #`(begin-for-syntax #,@out-gammas #,@out-deltas
#,@out-binds)]))
(define-syntax (dep-require syn)
(syntax-case syn ()
[(_ e ...)
#`(begin
(require (extend-env-and-require e ...))
(import-envs))]))
(define-syntax (dep-module+ syn)
(syntax-case syn ()
[(_ name body ...)
#`(module+ name
(begin-for-syntax
(gamma (term #,(gamma)))
(delta (term #,(delta)))
(bind-subst '#,(bind-subst)))
body ...)]))
;; -----------------------------------------------------------------
;; Core wrapper macros
;;
;; TODO: Can these be simplified further?
(define-syntax (dep-lambda syn)
(syntax-case syn (:)
[(_ (x : t) e)
(syntax->curnel-syntax
(quasisyntax/loc syn (λ (x : t) e)))]))
(define-syntax (dep-app syn)
(syntax-case syn ()
[(_ e1 e2)
(syntax->curnel-syntax
(quasisyntax/loc syn (#%app e1 e2)))]))
(define-syntax (dep-forall syn)
(syntax-case syn (:)
[(_ (x : t) e)
(syntax->curnel-syntax
(quasisyntax/loc syn (Π (x : t) e)))]))
(define-syntax (Type syn)
(syntax-case syn ()
[(_ i)
(syntax->curnel-syntax
(quasisyntax/loc syn (Unv i)))]
[_ (quasisyntax/loc syn (Type 0))]))
(define-syntax (dep-inductive syn)
(syntax-case syn (:)
[(_ i : ti (x1 : t1) ...)
(begin
(extend-Δ/syn! delta #'i #'ti #'((x1 : t1) ...))
#'(void))]))
(define-syntax (dep-elim syn)
(syntax-case syn ()
[(_ D T)
(syntax->curnel-syntax
(quasisyntax/loc syn (elim D T)))]))
(define-syntax-rule (dep-void) (void))
;; TODO: Not sure if this is the correct behavior for #%top
(define-syntax (dep-top syn)
(syntax-case syn ()
[(_ . id)
;; TODO NB FIXME: HACKS HACKS HACKS
(let ([t (core-expand #'id)])
(if (equal? (syntax->datum t) '(void))
#'(void)
(syntax->curnel-syntax t)))]))
(define-syntax (dep-top-interaction syn)
(syntax-case syn ()
[(_ . form)
(begin
;; TODO NB FIXME: HACKS
#`(begin
(export-envs gamma-out delta-out bind-out)
(begin-for-syntax
(define nm (map (lambda (x) (namespace-variable-value x #f (lambda x #t))) (namespace-mapped-symbols)))
(bind-subst (first (memf subst? nm)))
(gamma (first (memf Γ? nm)))
(delta (first (memf Δ? nm))))
form))]))
(define-syntax (dep-define syn)
(syntax-parse syn
[(_ id:id e)
(let ([e (cur->datum #'e)]
[id (syntax->datum #'id)])
;; NB: Have to roll our own namespace rather than use built-in define so id is resolved at
;; compile time in redex, and at runtime in racket.
(extend-Γ/term! gamma id (type-infer/term e))
(add-binding/term! id e)
#'(void))]))

View File

@ -0,0 +1,665 @@
#lang racket/base
;; TODO: Copy-paste of redex-core
(require
redex/reduction-semantics
cur/curnel/hybrid-core
rackunit
racket/function
(only-in racket/set set=?))
(define-syntax-rule (check-holds (e ...))
(check-true
(judgment-holds (e ...))))
(define-syntax-rule (check-not-holds (e ...))
(check-false
(judgment-holds (e ...))))
(define-syntax-rule (check-equiv? e1 e2)
(check (default-equiv) e1 e2))
(define-syntax-rule (check-not-equiv? e1 e2)
(check (compose not (default-equiv)) e1 e2))
(default-equiv (lambda (x y) (term (α-equivalent? ,x ,y))))
;; Syntax tests
;; ------------------------------------------------------------------------
(define-term Type (Unv 0))
(check-true (x? (term T)))
(check-true (x? (term A)))
(check-true (x? (term truth)))
(check-true (x? (term zero)))
(check-true (x? (term s)))
(check-true (t? (term zero)))
(check-true (t? (term s)))
(check-true (x? (term nat)))
(check-true (t? (term nat)))
(check-true (t? (term A)))
(check-true (t? (term S)))
(check-true (U? (term (Unv 0))))
(check-true (U? (term Type)))
(check-true (e? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
;; TODO: Rename these signatures, and use them in all future tests.
(define Δ (term (Δ-set* ,(make-empty-Δ)
(nat (Unv 0) ((zero : nat) (s : (Π (x : nat) nat))))
(bool (Unv 0) ((true : bool) (false : bool))))))
(define Δ0 (make-empty-Δ))
(define Δ3 (term (Δ-set ,(make-empty-Δ) and (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ())))
(define Δ4 (term (Δ-set ,(make-empty-Δ) and (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
((conj : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B))))))))))
(check-true (Δ? Δ0))
(check-true (Δ? Δ))
(check-true (Δ? Δ4))
(check-true (Δ? Δ3))
(check-true (Δ? Δ4))
(define sigma (term (Δ-set* ,(make-empty-Δ)
(true (Unv 0) ((T : true)))
(false (Unv 0) ())
(equal (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
())
(nat (Unv 0) ())
(heap (Unv 0) ())
(pre (Π (temp808 : heap) (Unv 0)) ()))))
(displayln sigma)
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ) (true (Unv 0) ((T : true)))))))
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ) (false (Unv 0) ())))))
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ) (equal (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
())))))
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ) (nat (Unv 0) ())))))
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ) (pre (Π (temp808 : heap) (Unv 0)) ())))))
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ) (true (Unv 0) ((T : true))) (false (Unv 0) ())))))
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ)
(true (Unv 0) ((T : true)))
(false (Unv 0) ())
(equal (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
())))))
(check-true (Δ? sigma))
(check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B))))))
;; α-equiv and subst tests
;; ------------------------------------------------------------------------
(check-true
(term
(α-equivalent?
(Π (a : S) (Π (b : B) ((and S) B)))
(subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))
;; Various accessor tests
;; ------------------------------------------------------------------------
(check-equal?
(term (Δ-key-by-constructor ,Δ zero))
(term nat))
(check-equal?
(term (Δ-key-by-constructor ,Δ s))
(term nat))
(check-equal?
(term (Δ-ref-constructor-map ,Δ nat))
(term ((zero : nat) (s : (Π (x : nat) nat)))))
(check-equal?
(term (Δ-ref-constructor-map ,sigma false))
(term ()))
;; Telescope tests
;; ------------------------------------------------------------------------
;; Are these telescopes the same when filled with alpha-equivalent, and equivalently renamed, termed
(define (telescope-equiv x y)
(alpha-equivalent? ttL (term (in-hole ,x (Unv 0))) (term (in-hole ,y (Unv 0)))))
(define-syntax-rule (check-telescope-equiv? e1 e2)
(check telescope-equiv e1 e2))
(define-syntax-rule (check-telescope-not-equiv? e1 e2)
(check (compose not telescope-equiv) e1 e2))
(check-telescope-equiv?
(term (Δ-ref-parameter-Ξ ,Δ nat))
(term hole))
(check-telescope-equiv?
(term (Δ-ref-parameter-Ξ ,Δ4 and))
(term (Π (A : Type) (Π (B : Type) hole))))
(check-telescope-equiv?
(term (Ξ-compose
(Π (x : t_0) (Π (y : t_1) hole))
(Π (z : t_2) (Π (a : t_3) hole))))
(term (Π (x : t_0) (Π (y : t_1) (Π (z : t_2) (Π (a : t_3) hole))))))
(check-telescope-equiv?
(term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat)))
(term (Π (m-zero : ((λ (x : nat) nat) zero))
(Π (m-s : (Π (x : nat) (Π (x-ih : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x))))) hole))))
(check-telescope-equiv?
(term (Δ-methods-telescope ,Δ nat P))
(term (Π (m-zero : (P zero))
(Π (m-s : (Π (x : nat) (Π (ih-x : (P x)) (P (s x)))))
hole))))
(check-telescope-equiv?
(term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat)))
(term (Π (m-zero : ((λ (x : nat) nat) zero))
(Π (m-s : (Π (x : nat) (Π (ih-x : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x)))))
hole))))
(check-telescope-equiv?
(term (Δ-methods-telescope ,Δ4 and (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))))
(term (Π (m-conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B)
((((λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
A)
B)
((((conj A) B) a) b)))))))
hole)))
(check-true (x? (term false)))
(check-true (Ξ? (term hole)))
(check-true (t? (term (λ (y : false) (Π (x : Type) x)))))
(check-true (redex-match? ttL ((x : t) ...) (term ())))
(check-telescope-equiv?
(term (Δ-methods-telescope ,sigma false (λ (y : false) (Π (x : Type) x))))
(term hole))
;; Tests for inductive elimination
;; ------------------------------------------------------------------------
;; TODO: Insufficient tests, no tests of inductives with parameters, or complex induction.
(check-true
(redex-match? tt-ctxtL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero))))
(check-telescope-equiv?
(term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(hole zero)))
(term (hole (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
zero))))
(check-telescope-equiv?
(term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(hole (s zero))))
(term (hole (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(s zero)))))
;; Tests for dynamic semantics
;; ------------------------------------------------------------------------
(check-true (v? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (v? (term (refl Nat))))
(check-true (v? (term ((refl Nat) z))))
;; TODO: Move equivalence up here, and use in these tests.
(check-equiv? (term (reduce (Unv 0))) (term (Unv 0)))
(check-equiv? (term (reduce ((λ (x : t) x) (Unv 0)))) (term (Unv 0)))
(check-not-equiv? (term (reduce ((Π (x : t) x) (Unv 0)))) (term (Unv 0)))
(check-not-equiv? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) (Unv 0)))))
(term (Π (x : t) (Unv 0))))
(check-not-equiv? (term (reduce (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
(term (Π (x : t) (x x))))
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat)
(s (s x)))))
zero)))
(term (s zero)))
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat)
(s (s x)))))
(s zero))))
(term (s (s zero))))
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(s (s (s zero))))))
(term (s (s (s (s zero))))))
(check-equiv?
(term (reduce ,Δ
(((((elim nat Type) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s (s zero)))))
(term (s (s (s (s zero))))))
(check-equiv?
(term (step ,Δ
(((((elim nat Type) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s (s zero)))))
(term
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
(s zero))
(((((elim nat Type) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s zero)))))
(check-equiv?
(term (step ,Δ (step ,Δ
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
(s zero))
(((((elim nat Type) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s zero))))))
(term
((λ (ih-x1 : nat) (s ih-x1))
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
zero)
(((((elim nat Type) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
zero)))))
(define-syntax-rule (check-equivalent e1 e2)
(check-holds (equivalent e1 e2)))
(check-equivalent
(λ (x : Type) x) (λ (y : Type) y))
(check-equivalent
(Π (x : Type) x) (Π (y : Type) y))
;; Test static semantics
;; ------------------------------------------------------------------------
(check-true (term (positive* nat (nat))))
(check-true (term (positive* nat ((Π (x : (Unv 0)) (Π (y : (Unv 0)) nat))))))
(check-true (term (positive* nat ((Π (x : nat) nat)))))
;; (nat -> nat) -> nat
;; Not sure if this is actually supposed to pass
(check-false (term (positive* nat ((Π (x : (Π (y : nat) nat)) nat)))))
;; ((Unv 0) -> nat) -> nat
(check-true (term (positive* nat ((Π (x : (Π (y : (Unv 0)) nat)) nat)))))
;; (((nat -> (Unv 0)) -> nat) -> nat)
(check-true (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) (Unv 0))) nat)) nat)))))
;; Not sure if this is actually supposed to pass
;; ((nat -> nat) -> nat) -> nat
(check-false (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) nat)) nat)) nat)))))
(check-true (judgment-holds (wf ,Δ0 )))
(check-true (redex-match? tt-redL (in-hole Ξ (Unv 0)) (term (Unv 0))))
(check-true (redex-match? tt-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat)))
(term (Π (x : nat) nat))))
(define (bindings-equal? l1 l2)
(map set=? l1 l2))
(check-pred
(curry bindings-equal?
(list (list
(make-bind 'Ξ (term (Π (x : nat) hole)))
(make-bind 'Φ (term hole))
(make-bind 'Θ (term hole)))
(list
(make-bind 'Ξ (term hole))
(make-bind 'Φ (term (Π (x : nat) hole)))
(make-bind 'Θ (term hole)))))
(map match-bindings (redex-match tt-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat)))
(term (Π (x : nat) nat)))))
(check-pred
(curry bindings-equal?
(list
(list
(make-bind 'Φ (term (Π (x : nat) hole)))
(make-bind 'Θ (term hole)))))
(map match-bindings (redex-match tt-redL (in-hole hole (in-hole Φ (in-hole Θ nat)))
(term (Π (x : nat) nat)))))
(check-true
(redex-match? tt-redL
(in-hole hole (in-hole hole (in-hole hole nat)))
(term nat)))
(check-true
(redex-match? tt-redL
(in-hole hole (in-hole (Π (x : nat) hole) (in-hole hole nat)))
(term (Π (x : nat) nat))))
(check-holds (wf (Δ-set ,(make-empty-Δ) nat (Unv 0) ()) ))
(check-holds (wf ,Δ0 ))
(check-holds (type-infer ,(make-empty-Δ) (Unv 0) U))
(check-holds (type-infer ,(make-empty-Δ) ( nat : (Unv 0)) nat U))
(check-holds (type-infer ,(make-empty-Δ) ( nat : (Unv 0)) (Π (x : nat) nat) U))
(check-true (term (positive* nat (nat (Π (x : nat) nat)))))
(check-holds
(wf (Δ-set ,(make-empty-Δ) nat (Unv 0) ((zero : nat))) ))
(check-holds
(wf (Δ-set ,(make-empty-Δ) nat (Unv 0) ((s : (Π (x : nat) nat)))) ))
(check-holds (wf ,Δ ))
;; TODO: Poor abstraction w.r.t. Δ
(check-holds (wf ,Δ3 ))
(check-holds (wf ,Δ4 ))
(check-holds (wf (Δ-set ,(make-empty-Δ) truth (Unv 0) ()) ))
(check-holds (wf ,(make-empty-Δ) ( x : (Unv 0))))
(check-holds (wf (Δ-set ,(make-empty-Δ) nat (Unv 0) ()) ( x : nat)))
(check-holds (wf (Δ-set ,(make-empty-Δ) nat (Unv 0) ()) ( x : (Π (x : nat) nat))))
(check-holds (type-infer ,(make-empty-Δ) (Unv 0) (Unv 1)))
(check-holds (type-infer ,(make-empty-Δ) ( x : (Unv 0)) (Unv 0) (Unv 1)))
(check-holds (type-infer ,(make-empty-Δ) ( x : (Unv 0)) x (Unv 0)))
(check-holds (type-infer ,(make-empty-Δ) (( x_0 : (Unv 0)) x_1 : (Unv 0))
(Π (x_3 : x_0) x_1) (Unv 0)))
(check-holds (type-infer ,(make-empty-Δ) ( x_0 : (Unv 0)) x_0 U_1))
(check-holds (type-infer ,(make-empty-Δ) (( x_0 : (Unv 0)) x_2 : x_0) (Unv 0) U_2))
(check-holds (unv-pred (Unv 0) (Unv 0) (Unv 0)))
(check-holds (type-infer ,(make-empty-Δ) ( x_0 : (Unv 0)) (Π (x_2 : x_0) (Unv 0)) t))
(check-holds (type-check ,(make-empty-Δ) (λ (x : (Unv 0)) x) (Π (x : (Unv 0)) (Unv 0))))
(check-holds (type-check ,(make-empty-Δ) (λ (y : (Unv 0)) (λ (x : y) x))
(Π (y : (Unv 0)) (Π (x : y) y))))
(check-equal? (list (term (Unv 1)))
(judgment-holds
(type-infer ,(make-empty-Δ) (( x1 : (Unv 0)) x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0)))
U)
U))
;; ---- Elim
;; TODO: Clean up/Reorganize these tests
(check-true
(redex-match? tt-typingL
(in-hole Θ_m (((elim x_D U) e_D) e_P))
(term ((((elim truth Type) T) (Π (x : truth) (Unv 1))) (Unv 0)))))
(define Δtruth (term (Δ-set ,(make-empty-Δ) truth (Unv 0) ((T : truth)))))
(check-holds (type-infer ,Δtruth truth (in-hole Ξ U)))
(check-holds (type-infer ,Δtruth T (in-hole Θ_ai truth)))
(check-holds (type-infer ,Δtruth (λ (x : truth) (Unv 1))
(in-hole Ξ (Π (x : (in-hole Θ truth)) U))))
(check-telescope-equiv?
(term (Δ-methods-telescope ,Δtruth truth (λ (x : truth) (Unv 1))))
(term (Π (m-T : ((λ (x : truth) (Unv 1)) T)) hole)))
(check-holds (type-infer ,Δtruth (elim truth Type) t))
(check-holds (type-check (Δ-set ,(make-empty-Δ) truth (Unv 0) ((T : truth)))
((((elim truth (Unv 2)) (λ (x : truth) (Unv 1))) (Unv 0))
T)
(Unv 1)))
(check-not-holds (type-check (Δ-set ,(make-empty-Δ) truth (Unv 0) ((T : truth)))
((((elim truth (Unv 1)) Type) Type) T)
(Unv 1)))
(check-holds
(type-infer ,(make-empty-Δ) (Π (x2 : (Unv 0)) (Unv 0)) U))
(check-holds
(type-infer ,(make-empty-Δ) ( x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))))
t))
(check-holds
(type-infer ,Δ nat (in-hole Ξ U)))
(check-holds
(type-infer ,Δ zero (in-hole Θ_ai nat)))
(check-holds
(type-infer ,Δ (λ (x : nat) nat)
(in-hole Ξ (Π (x : (in-hole Θ nat)) U))))
(define-syntax-rule (nat-test syn ...)
(check-holds (type-check ,Δ syn ...)))
(nat-test (Π (x : nat) nat) (Unv 0))
(nat-test (λ (x : nat) x) (Π (x : nat) nat))
(nat-test (((((elim nat Type) (λ (x : nat) nat)) zero)
(λ (x : nat) (λ (ih-x : nat) x))) zero)
nat)
(nat-test nat (Unv 0))
(nat-test zero nat)
(nat-test s (Π (x : nat) nat))
(nat-test (s zero) nat)
;; TODO: Meta-function auto-currying and such
(check-holds
(type-infer ,Δ ((((elim nat (Unv 0)) (λ (x : nat) nat))
zero)
(λ (x : nat) (λ (ih-x : nat) x)))
t))
(nat-test (((((elim nat (Unv 0)) (λ (x : nat) nat))
zero)
(λ (x : nat) (λ (ih-x : nat) x)))
zero)
nat)
(nat-test (((((elim nat (Unv 0)) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
zero)
nat)
(nat-test (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)
nat)
(nat-test ( n : nat)
(((((elim nat (Unv 0)) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) n)
nat)
(check-holds
(type-check (Δ-set ,Δ bool (Unv 0) ((btrue : bool) (bfalse : bool)))
( n2 : nat)
(((((elim nat (Unv 0)) (λ (x : nat) bool))
btrue)
(λ (x : nat) (λ (ih-x : bool) bfalse)))
n2)
bool))
(check-not-holds
(type-check ,Δ
((((elim nat (Unv 0)) nat) (s zero)) zero)
nat))
(define lam (term (λ (nat : (Unv 0)) nat)))
(check-equivalent
(Π (nat : (Unv 0)) (Unv 0))
,(car (judgment-holds (type-infer ,Δ0 ,lam t) t)))
(check-equivalent
(Π (nat : (Unv 0)) (Unv 0))
,(car (judgment-holds (type-infer ,Δ ,lam t) t)))
(check-equivalent
(Π (x : (Π (y : (Unv 0)) y)) nat)
,(car (judgment-holds (type-infer (Δ-set ,(make-empty-Δ) nat (Unv 0) ()) (λ (x : (Π (y : (Unv 0)) y)) (x nat))
t) t)))
(check-equivalent
(Π (y : (Unv 0)) (Unv 0))
,(car (judgment-holds (type-infer (Δ-set ,(make-empty-Δ) nat (Unv 0) ()) (λ (y : (Unv 0)) y) t) t)))
(check-equivalent
(Unv 0)
,(car (judgment-holds (type-infer (Δ-set ,(make-empty-Δ) nat (Unv 0) ())
((λ (x : (Π (y : (Unv 0)) (Unv 0))) (x nat))
(λ (y : (Unv 0)) y))
t) t)))
(check-equal?
(list (term (Unv 0)) (term (Unv 1)))
(judgment-holds
(type-infer ,Δ4 (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))
U) U))
(check-holds
(type-check ,Δ4 ( S : (Unv 0)) conj (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))
(check-holds
(type-check ,Δ4 ( S : (Unv 0))
conj (Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : P) (Π (y : Q) ((and P) Q)))))))
(check-holds
(type-check ,Δ4 ( S : (Unv 0)) S (Unv 0)))
(check-holds
(type-check ,Δ4 ( S : (Unv 0)) (conj S)
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
(check-holds
(type-check ,Δ4 ( S : (Unv 0)) (conj S)
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
(check-holds
(type-check ,Δ4 (λ (S : (Unv 0)) (conj S))
(Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))))
(check-holds
(type-check (Δ-set ,Δ4 true (Unv 0) ((tt : true)))
((((conj true) true) tt) tt)
((and true) true)))
(check-holds
(type-infer ,Δ4 and (in-hole Ξ U_D)))
(check-holds
(type-infer (Δ-set ,Δ4 true (Unv 0) ((tt : true)))
((((conj true) true) tt) tt)
(in-hole Θ and)))
(check-holds
(type-infer (Δ-set ,Δ4 true (Unv 0) ((tt : true)))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
(check-holds
(type-check (Δ-set ,Δ4 true (Unv 0) ((tt : true)))
((((((elim and (Unv 0))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
true))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) tt)))))
true) true)
((((conj true) true) tt) tt))
true))
(check-true (Γ? (term ((( P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q)))))
(check-holds
(type-infer ,Δ4 and (in-hole Ξ U)))
(check-holds
(type-infer ,Δ4 ((( P : Type) Q : Type) ab : ((and P) Q))
ab (in-hole Θ and)))
(check-true
(redex-match? tt-redL
(in-hole Ξ (Π (x : (in-hole Θ and)) U))
(term (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0)))))))
(check-holds
(type-infer ,Δ4 ((( P : Type) Q : Type) ab : ((and P) Q))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A))))
(in-hole Ξ (Π (x : (in-hole Θ and)) U))))
(check-holds
(equivalent ,Δ4
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))
(Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : ((and P) Q)) (Unv 0))))))
(check-holds
(type-infer ,Δ4
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A))))
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
(check-holds
(type-check ,Δ4
((( P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))
((((((elim and (Unv 0))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A)))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) ((((conj B) A) b) a))))))
P) Q) ab)
((and Q) P)))
(check-holds
(type-check (Δ-set ,Δ4 true (Unv 0) ((tt : true)))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) ((and B) A))))
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))))
(check-holds
(type-infer (Δ-set ,Δ4 true (Unv 0) ((tt : true)))
(( A : Type) B : Type)
(conj B)
t))
(check-holds
(type-check (Δ-set ,Δ4 true (Unv 0) ((tt : true)))
((((((elim and (Unv 0))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A)))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) ((((conj B) A) b) a))))))
true) true)
((((conj true) true) tt) tt))
((and true) true)))
(define gamma (term ( temp863 : pre)))
(check-holds (wf ,sigma ))
(check-holds (wf ,sigma ,gamma))
(check-holds
(type-infer ,sigma ,gamma (Unv 0) t))
(check-holds
(type-infer ,sigma ,gamma pre t))
(check-holds
(type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1)))
(check-holds
(type-infer ,sigma ,gamma pre t))
(check-holds
(type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1)))
(check-holds
(type-infer ,sigma (,gamma x : false) false (in-hole Ξ U_D)))
(check-holds
(type-infer ,sigma (,gamma x : false) x (in-hole Θ false)))
(check-holds
(type-infer ,sigma (,gamma x : false) (λ (y : false) (Π (x : Type) x))
(in-hole Ξ (Π (x : (in-hole Θ false)) U))))
(check-true
(redex-match? tt-typingL
((in-hole Θ_m ((elim x_D U) e_P)) e_D)
(term (((elim false (Unv 1)) (λ (y : false) (Π (x : Type) x)))
x))))
(check-holds
(type-check ,sigma (,gamma x : false)
(((elim false (Unv 0)) (λ (y : false) (Π (x : Type) x))) x)
(Π (x : (Unv 0)) x)))
;; nat-equal? tests
(define zero?
(term ((((elim nat Type) (λ (x : nat) bool))
true)
(λ (x : nat) (λ (x_ih : bool) false)))))
(check-holds
(type-check ,Δ ,zero? (Π (x : nat) bool)))
(check-equal?
(term (reduce ,Δ (,zero? zero)))
(term true))
(check-equal?
(term (reduce ,Δ (,zero? (s zero))))
(term false))
(define ih-equal?
(term ((((elim nat Type) (λ (x : nat) bool))
false)
(λ (x : nat) (λ (y : bool) (x_ih x))))))
(check-holds
(type-check ,Δ ( x_ih : (Π (x : nat) bool))
,ih-equal?
(Π (x : nat) bool)))
(check-holds
(type-infer ,Δ nat (Unv 0)))
(check-holds
(type-infer ,Δ bool (Unv 0)))
(check-holds
(type-infer ,Δ (λ (x : nat) (Π (x : nat) bool)) (Π (x : nat) (Unv 0))))
(define nat-equal?
(term ((((elim nat Type) (λ (x : nat) (Π (x : nat) bool)))
,zero?)
(λ (x : nat) (λ (x_ih : (Π (x : nat) bool))
,ih-equal?)))))
(check-holds
(type-check ,Δ ( nat-equal? : (Π (x-D«4158» : nat) ((λ (x«4159» : nat) (Π (x«4160» : nat) bool)) x-D«4158»)))
((nat-equal? zero) zero)
bool))
(check-holds
(type-check ,Δ
,nat-equal?
(Π (x : nat) (Π (y : nat) bool))))
(check-equal?
(term (reduce ,Δ ((,nat-equal? zero) (s zero))))
(term false))
(check-equal?
(term (reduce ,Δ ((,nat-equal? (s zero)) zero)))
(term false))
;; == tests
(define Δ= (term (Δ-set ,Δ == (Π (A : (Unv 0)) (Π (a : A) (Π (b : A) (Unv 0))))
((refl : (Π (A : (Unv 0)) (Π (a : A) (((== A) a) a))))))))
(check-true (Δ? Δ=))
(define refl-elim
(term (((((((elim == (Unv 0)) (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((==
A1)
x1)
y1))
nat)))))
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true))))
(check-holds
(type-check ,Δ= ,refl-elim nat))
(check-true
(redex-match?
tt-redL
(Δ (in-hole E (in-hole Θ ((elim x_D U) e_P))))
(term (,Δ= ,refl-elim))))
(check-true
(redex-match?
tt-redL
(in-hole (Θ_p (in-hole Θ_i x_ci)) Θ_m)
(term (((((hole
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true)))))
(check-telescope-equiv?
(term (Δ-ref-parameter-Ξ ,Δ= ==))
(term (Π (A : Type) (Π (a : A) (Π (b : A) hole)))))
(check-equal?
(term (reduce ,Δ= ,refl-elim))
(term zero))