Compare commits
7 Commits
master
...
hybrid-cor
Author | SHA1 | Date | |
---|---|---|---|
![]() |
302d8014fa | ||
![]() |
97a11ea253 | ||
![]() |
b318617f0e | ||
![]() |
c99b44bc09 | ||
![]() |
23d0cf3e6f | ||
![]() |
c8f9f1c867 | ||
![]() |
0fd59566da |
|
@ -5,7 +5,7 @@
|
|||
racket/syntax
|
||||
syntax/parse
|
||||
(for-template
|
||||
(only-in "curnel/redex-lang.rkt"
|
||||
(only-in "curnel/hybrid-lang.rkt"
|
||||
cur-expand)))
|
||||
|
||||
(provide cur-match)
|
||||
|
@ -17,7 +17,7 @@
|
|||
[pattern body] ...)])))
|
||||
|
||||
(require
|
||||
(rename-in "curnel/redex-lang.rkt" [provide -provide])
|
||||
(rename-in "curnel/hybrid-lang.rkt" [provide -provide])
|
||||
(only-in racket/base eof)
|
||||
(for-syntax 'extra)
|
||||
'extra)
|
||||
|
@ -27,5 +27,5 @@
|
|||
(except-out
|
||||
(all-from-out
|
||||
'extra
|
||||
"curnel/redex-lang.rkt")
|
||||
"curnel/hybrid-lang.rkt")
|
||||
-provide))
|
||||
|
|
648
cur-lib/cur/curnel/hybrid-core.rkt
Normal file
648
cur-lib/cur/curnel/hybrid-core.rkt
Normal file
|
@ -0,0 +1,648 @@
|
|||
#lang racket/base
|
||||
|
||||
;; A mostly Redex core, with parts written in Racket for performance reasons
|
||||
|
||||
(require
|
||||
racket/dict
|
||||
racket/function
|
||||
racket/list
|
||||
redex/reduction-semantics)
|
||||
|
||||
(provide
|
||||
(all-defined-out))
|
||||
|
||||
(set-cache-size! 10000)
|
||||
|
||||
(define-language base
|
||||
(dict ::= any))
|
||||
;; TODO: More abstractions for Redex dictionaries.
|
||||
|
||||
(define make-dict make-immutable-hash)
|
||||
|
||||
#| ttL is the core language of Cur. Very similar to TT (Idirs core) and Luo's UTT. Surface
|
||||
| langauge should provide short-hand, such as -> for non-dependent function types, and type
|
||||
| inference.
|
||||
|#
|
||||
(define-extended-language ttL base
|
||||
(i j k ::= natural)
|
||||
(U ::= (Unv i))
|
||||
(t e ::= U (λ (x : t) e) x (Π (x : t) t) (e e) (elim D U))
|
||||
(Δ ::= dict)
|
||||
(D x c ::= variable-not-otherwise-mentioned)
|
||||
#:binding-forms
|
||||
(λ (x : t) e #:refers-to x)
|
||||
(Π (x : t_0) t_1 #:refers-to x))
|
||||
|
||||
(define x? (redex-match? ttL x))
|
||||
(define t? (redex-match? ttL t))
|
||||
(define e? (redex-match? ttL e))
|
||||
(define U? (redex-match? ttL U))
|
||||
|
||||
;; TODO: Constracts
|
||||
;; An inductive-decl contains the type of the type being declared,
|
||||
;; a t?, and a dictionary of constructor names (x?) mapped to their
|
||||
;; types (t?), the original syntax/order of the constructor
|
||||
;; declaration ((x : t) ...), and the list of constructors in the
|
||||
;; original order (x ...)
|
||||
(define-struct inductive-decl (type constr-dict constr-decl constr-ls) #:prefab)
|
||||
|
||||
;; A Δ is a dict mapping names x? to inductive-decl?
|
||||
(define Δ? dict?)
|
||||
(define make-empty-Δ make-dict)
|
||||
(define empty-Δ? dict-empty?)
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Universe typing
|
||||
|
||||
(define-judgment-form ttL
|
||||
#:mode (unv-type I O)
|
||||
#:contract (unv-type U U)
|
||||
|
||||
[(where i_1 ,(add1 (term i_0)))
|
||||
-----------------
|
||||
(unv-type (Unv i_0) (Unv i_1))])
|
||||
|
||||
;; Universe predicativity rules. Impredicative in (Unv 0)
|
||||
(define-judgment-form ttL
|
||||
#:mode (unv-pred I I O)
|
||||
#:contract (unv-pred U U U)
|
||||
|
||||
[----------------
|
||||
(unv-pred (Unv i) (Unv 0) (Unv 0))]
|
||||
|
||||
[(where i_3 ,(max (term i_1) (term i_2)))
|
||||
----------------
|
||||
(unv-pred (Unv i_1) (Unv i_2) (Unv i_3))])
|
||||
|
||||
(define-metafunction ttL
|
||||
α-equivalent? : t t -> #t or #f
|
||||
[(α-equivalent? t_0 t_1)
|
||||
,(alpha-equivalent? ttL (term t_0) (term t_1))])
|
||||
|
||||
;; Replace x by t_1 in t_0
|
||||
(define-metafunction ttL
|
||||
subst : t x t -> t
|
||||
[(subst t_0 x t_1)
|
||||
(substitute t_0 x t_1)])
|
||||
|
||||
(define-metafunction ttL
|
||||
subst-all : t (x ...) (e ...) -> t
|
||||
[(subst-all t () ()) t]
|
||||
[(subst-all t (x_0 x ...) (e_0 e ...))
|
||||
(subst-all (subst t x_0 e_0) (x ...) (e ...))])
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Primitive Operations on signatures Δ (those operations that do not require contexts)
|
||||
|
||||
;; TODO: Maybe shouldn't fall back, but maintains redex-core interface.
|
||||
;; Get the type of x as declared in Δ, as either a constructor or an inductive type
|
||||
(define-metafunction ttL
|
||||
Δ-ref-type : Δ x -> t or #f
|
||||
[(Δ-ref-type Δ x)
|
||||
,(cond
|
||||
[(dict-ref (term Δ) (term x) (thunk #f))
|
||||
=> inductive-decl-type]
|
||||
[else (term (Δ-ref-constructor-type Δ foo x))])])
|
||||
|
||||
;; Get the type of a constructor x in the inductive declaration Δ
|
||||
;; TODO: Doesn't need x_D anymore
|
||||
(define-metafunction ttL
|
||||
Δ-ref-constructor-type : Δ x x -> t or #f
|
||||
[(Δ-ref-constructor-type Δ x_D x)
|
||||
,(cond
|
||||
[(for/or ([(D idecl) (in-dict (term Δ))])
|
||||
(let ([constr-dict (inductive-decl-constr-dict idecl)])
|
||||
(and (dict-has-key? constr-dict (term x)) constr-dict)))
|
||||
=>
|
||||
(curryr dict-ref (term x))]
|
||||
[else #f])])
|
||||
|
||||
;; Add an inductive declaration to Δ
|
||||
(define-metafunction ttL
|
||||
Δ-set : Δ x t ((x : t) ...) -> Δ
|
||||
[(Δ-set Δ x t (name decl ((c : t_c) ...)))
|
||||
,(dict-set
|
||||
(term Δ)
|
||||
(term x)
|
||||
(inductive-decl
|
||||
(term t)
|
||||
(for/fold ([d (make-dict)])
|
||||
([constr-decl (term decl)])
|
||||
(dict-set d (first constr-decl) (third constr-decl)))
|
||||
(term decl)
|
||||
(term (c ...))))])
|
||||
|
||||
;; Merge two inductive declarations
|
||||
(define-metafunction ttL
|
||||
Δ-union : Δ Δ -> Δ
|
||||
[(Δ-union Δ_1 Δ_2)
|
||||
,(for/fold ([d (term Δ_1)])
|
||||
([(k v) (in-dict (term Δ_2))])
|
||||
(dict-set d k v))])
|
||||
|
||||
(define-metafunction ttL
|
||||
Δ-set* : Δ (x t ((x : t) ...)) ... -> Δ
|
||||
[(Δ-set* Δ) Δ]
|
||||
[(Δ-set* Δ (D t_D ((c : t_c) ...)) any_r ...)
|
||||
(Δ-set* (Δ-set Δ D t_D ((c : t_c) ...)) any_r ...)])
|
||||
|
||||
;; Returns the inductively defined type that x constructs
|
||||
(define-metafunction ttL
|
||||
Δ-key-by-constructor : Δ x -> x or #f
|
||||
[(Δ-key-by-constructor Δ x_c)
|
||||
,(for/or ([(k v) (in-dict (term Δ))])
|
||||
(and (dict-has-key? (inductive-decl-constr-dict v) (term x_c)) k))])
|
||||
|
||||
;; Returns the constructor map for the inductively defined type x_D in the signature Δ
|
||||
(define-metafunction ttL
|
||||
Δ-ref-constructor-map : Δ x -> ((x : t) ...) or #f
|
||||
[(Δ-ref-constructor-map Δ x_D)
|
||||
,(cond
|
||||
[(dict-ref (term Δ) (term x_D) (thunk #f)) =>
|
||||
inductive-decl-constr-decl]
|
||||
[else #f])])
|
||||
|
||||
;; Get the list of constructors for the inducitvely defined type x_D
|
||||
(define-metafunction ttL
|
||||
Δ-ref-constructors : Δ x -> (x ...) or #f
|
||||
[(Δ-ref-constructors Δ x_D)
|
||||
,(inductive-decl-constr-ls (dict-ref (term Δ) (term x_D)))])
|
||||
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction ttL
|
||||
sequence-index-of : any (any ...) -> natural
|
||||
[(sequence-index-of any_0 (any_0 any ...))
|
||||
0]
|
||||
[(sequence-index-of any_0 (any_1 any ...))
|
||||
,(add1 (term (sequence-index-of any_0 (any ...))))])
|
||||
|
||||
;; Get the index of the constructor x_ci in the list of constructors for x_D
|
||||
(define-metafunction ttL
|
||||
Δ-constructor-index : Δ x x -> natural
|
||||
[(Δ-constructor-index Δ x_D x_ci)
|
||||
(sequence-index-of x_ci (Δ-ref-constructors Δ x_D))])
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Operations that involve contexts.
|
||||
|
||||
(define-extended-language tt-ctxtL ttL
|
||||
;; Telescope.
|
||||
;; NB: There is a bijection between this an a vector of maps from x to t
|
||||
(Ξ Φ ::= hole (Π (x : t) Ξ))
|
||||
;; Apply context
|
||||
;; NB: There is a bijection between this an a vector expressions
|
||||
(Θ ::= hole (Θ e)))
|
||||
|
||||
(define Ξ? (redex-match? tt-ctxtL Ξ))
|
||||
(define Φ? (redex-match? tt-ctxtL Φ))
|
||||
(define Θ? (redex-match? tt-ctxtL Θ))
|
||||
|
||||
;; TODO: Might be worth it to actually maintain the above bijections, for performance reasons.
|
||||
|
||||
;; Return the parameters of x_D as a telescope Ξ
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-ref-parameter-Ξ : Δ x -> Ξ
|
||||
[(Δ-ref-parameter-Ξ Δ x_D)
|
||||
Ξ
|
||||
(where (in-hole Ξ U) (Δ-ref-type Δ x_D))])
|
||||
|
||||
;; Applies the term t to the telescope Ξ.
|
||||
;; TODO: Test
|
||||
#| TODO:
|
||||
| This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true
|
||||
| that (equivalent t (Ξ-apply Ξ t))?
|
||||
| Maybe not. t is a lambda whose type is equivalent to (Ξ-apply Ξ t)? Yes.
|
||||
|#
|
||||
(define-metafunction tt-ctxtL
|
||||
Ξ-apply : Ξ t -> t
|
||||
[(Ξ-apply hole t) t]
|
||||
[(Ξ-apply (Π (x : t) Ξ) t_0) (Ξ-apply Ξ (t_0 x))])
|
||||
|
||||
;; Compose multiple telescopes into a single telescope:
|
||||
(define-metafunction tt-ctxtL
|
||||
Ξ-compose : Ξ Ξ ... -> Ξ
|
||||
[(Ξ-compose Ξ) Ξ]
|
||||
[(Ξ-compose Ξ_0 Ξ_1 Ξ_rest ...)
|
||||
(Ξ-compose (in-hole Ξ_0 Ξ_1) Ξ_rest ...)])
|
||||
|
||||
;; Compute the number of arguments in a Ξ
|
||||
(define-metafunction tt-ctxtL
|
||||
Ξ-length : Ξ -> natural
|
||||
[(Ξ-length hole) 0]
|
||||
[(Ξ-length (Π (x : t) Ξ)) ,(add1 (term (Ξ-length Ξ)))])
|
||||
|
||||
;; Compute the number of applications in a Θ
|
||||
(define-metafunction tt-ctxtL
|
||||
Θ-length : Θ -> natural
|
||||
[(Θ-length hole) 0]
|
||||
[(Θ-length (Θ e)) ,(add1 (term (Θ-length Θ)))])
|
||||
|
||||
;; Reference an expression in Θ by index; index 0 corresponds to the the expression applied to a hole.
|
||||
(define-metafunction tt-ctxtL
|
||||
Θ-ref : Θ natural -> e or #f
|
||||
[(Θ-ref hole natural) #f]
|
||||
[(Θ-ref (in-hole Θ (hole e)) 0) e]
|
||||
[(Θ-ref (in-hole Θ (hole e)) natural) (Θ-ref Θ ,(sub1 (term natural)))])
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Computing the types of eliminators
|
||||
|
||||
;; Returns the telescope of the arguments for the constructor x_ci of the inductively defined type x_D
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-constructor-telescope : Δ x x -> Ξ
|
||||
[(Δ-constructor-telescope Δ x_D x_ci)
|
||||
Ξ
|
||||
(where (in-hole Ξ (in-hole Θ x_D))
|
||||
(Δ-ref-constructor-type Δ x_D x_ci))])
|
||||
|
||||
;; Returns the parameter arguments as an apply context of the constructor x_ci of the inductively
|
||||
;; defined type x_D
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-constructor-parameters : Δ x x -> Θ
|
||||
[(Δ-constructor-parameters Δ x_D x_ci)
|
||||
Θ
|
||||
(where (in-hole Ξ (in-hole Θ x_D))
|
||||
(Δ-ref-constructor-type Δ x_D x_ci))])
|
||||
|
||||
;; Inner loop for Δ-constructor-noninductive-telescope
|
||||
(define-metafunction tt-ctxtL
|
||||
noninductive-loop : x Φ -> Φ
|
||||
[(noninductive-loop x_D hole) hole]
|
||||
[(noninductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))
|
||||
(noninductive-loop x_D Φ_1)]
|
||||
[(noninductive-loop x_D (Π (x : t) Φ_1))
|
||||
(Π (x : t) (noninductive-loop x_D Φ_1))])
|
||||
|
||||
;; Returns the noninductive arguments to the constructor x_ci of the inductively defined type x_D
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-constructor-noninductive-telescope : Δ x x -> Ξ
|
||||
[(Δ-constructor-noninductive-telescope Δ x_D x_ci)
|
||||
(noninductive-loop x_D (Δ-constructor-telescope Δ x_D x_ci))])
|
||||
|
||||
;; Inner loop for Δ-constructor-inductive-telescope
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction tt-ctxtL
|
||||
inductive-loop : x Φ -> Φ
|
||||
[(inductive-loop x_D hole) hole]
|
||||
[(inductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))
|
||||
(Π (x : (in-hole Φ (in-hole Θ x_D))) (inductive-loop x_D Φ_1))]
|
||||
[(inductive-loop x_D (Π (x : t) Φ_1))
|
||||
(inductive-loop x_D Φ_1)])
|
||||
|
||||
;; Returns the inductive arguments to the constructor x_ci of the inducitvely defined type x_D
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-constructor-inductive-telescope : Δ x x -> Ξ
|
||||
[(Δ-constructor-inductive-telescope Δ x_D x_ci)
|
||||
(inductive-loop x_D (Δ-constructor-telescope Δ x_D x_ci))])
|
||||
|
||||
;; Returns the inductive hypotheses required for eliminating the inductively defined type x_D with
|
||||
;; motive t_P, where the telescope Φ are the inductive arguments to a constructor for x_D
|
||||
(define-metafunction tt-ctxtL
|
||||
hypotheses-loop : x t Φ -> Φ
|
||||
[(hypotheses-loop x_D t_P hole) hole]
|
||||
[(hypotheses-loop x_D t_P (name any_0 (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)))
|
||||
;; TODO: Instead of this nonsense, it might be simpler to pass in the type of t_P and use that
|
||||
;; as/to compute the type of the hypothesis.
|
||||
(Π (x_h : (in-hole Φ ((in-hole Θ t_P) (Ξ-apply Φ x))))
|
||||
(hypotheses-loop x_D t_P Φ_1))
|
||||
(where x_h ,(variable-not-in (term (x_D t_P any_0)) 'x-ih))])
|
||||
|
||||
;; Returns the inductive hypotheses required for the elimination method of constructor x_ci for
|
||||
;; inductive type x_D, when eliminating with motive t_P.
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-constructor-inductive-hypotheses : Δ x x t -> Ξ
|
||||
[(Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P)
|
||||
(hypotheses-loop x_D t_P (Δ-constructor-inductive-telescope Δ x_D x_ci))])
|
||||
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-constructor-method-telescope : Δ x x t -> Ξ
|
||||
[(Δ-constructor-method-telescope Δ x_D x_ci t_P)
|
||||
(Π (x_mi : (in-hole Ξ_a (in-hole Ξ_h ((in-hole Θ_p t_P) (Ξ-apply Ξ_a x_ci)))))
|
||||
hole)
|
||||
(where Θ_p (Δ-constructor-parameters Δ x_D x_ci))
|
||||
(where Ξ_a (Δ-constructor-telescope Δ x_D x_ci))
|
||||
(where Ξ_h (Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P))
|
||||
(where x_mi ,(variable-not-in (term (t_P Δ)) 'x-mi))])
|
||||
|
||||
;; fold Ξ-compose over map Δ-constructor-method-telescope over the list of constructors
|
||||
(define-metafunction tt-ctxtL
|
||||
method-loop : Δ x t (x ...) -> Ξ
|
||||
[(method-loop Δ x_D t_P ()) hole]
|
||||
[(method-loop Δ x_D t_P (x_0 x_rest ...))
|
||||
(Ξ-compose (Δ-constructor-method-telescope Δ x_D x_0 t_P) (method-loop Δ x_D t_P (x_rest ...)))])
|
||||
|
||||
;; Returns the telescope of all methods required to eliminate the type x_D with motive t_P
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-methods-telescope : Δ x t -> Ξ
|
||||
[(Δ-methods-telescope Δ x_D t_P)
|
||||
(method-loop Δ x_D t_P (Δ-ref-constructors Δ x_D))])
|
||||
|
||||
;; Computes the type of the eliminator for the inductively defined type x_D with a motive whose result
|
||||
;; is in universe U.
|
||||
;;
|
||||
;; The type of (elim x_D U) is something like:
|
||||
;; (∀ (P : (∀ a -> ... -> (D a ...) -> U))
|
||||
;; (method_ci ...) -> ... ->
|
||||
;; (a -> ... -> (D a ...) ->
|
||||
;; (P a ... (D a ...))))
|
||||
;;
|
||||
;; x_D is an inductively defined type
|
||||
;; U is the sort the motive
|
||||
;; x_P is the name of the motive
|
||||
;; Ξ_P*D is the telescope of the parameters of x_D and
|
||||
;; the witness of type x_D (applied to the parameters)
|
||||
;; Ξ_m is the telescope of the methods for x_D
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-elim-type : Δ x U -> t
|
||||
[(Δ-elim-type Δ x_D U)
|
||||
(Π (x_P : (in-hole Ξ_P*D U))
|
||||
;; The methods Ξ_m for each constructor of type x_D
|
||||
(in-hole Ξ_m
|
||||
;; And finally, the parameters and discriminant
|
||||
(in-hole Ξ_P*D
|
||||
;; The result is (P a ... (x_D a ...)), i.e., the motive
|
||||
;; applied to the paramters and discriminant
|
||||
(Ξ-apply Ξ_P*D x_P))))
|
||||
;; Get the parameters of x_D
|
||||
(where Ξ (Δ-ref-parameter-Ξ Δ x_D))
|
||||
;; A fresh name to bind the discriminant
|
||||
(where x ,(variable-not-in (term (Δ Γ x_D Ξ)) 'x-D))
|
||||
;; The telescope (∀ a -> ... -> (D a ...) hole), i.e.,
|
||||
;; of the parameters and the inductive type applied to the
|
||||
;; parameters
|
||||
(where Ξ_P*D (in-hole Ξ (Π (x : (Ξ-apply Ξ x_D)) hole)))
|
||||
;; A fresh name for the motive
|
||||
(where x_P ,(variable-not-in (term (Δ Γ x_D Ξ Ξ_P*D x)) 'x-P))
|
||||
;; The types of the methods for this inductive.
|
||||
(where Ξ_m (Δ-methods-telescope Δ x_D x_P))])
|
||||
|
||||
;; TODO: This might belong in the next section, since it's related to evaluation
|
||||
;; Generate recursive applications of the eliminator for each inductive argument of type x_D.
|
||||
;; In more detaill, given motive t_P, parameters Θ_p, methods Θ_m, and arguments Θ_i to constructor
|
||||
;; x_ci for x_D, for each inductively smaller term t_i of type (in-hole Θ_p x_D) inside Θ_i,
|
||||
;; generate: (elim x_D U t_P Θ_m ... Θ_p ... t_i)
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-inductive-elim : Δ x U t Θ Θ Θ -> Θ
|
||||
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m (in-hole Θ_i (hole (name t_i (in-hole Θ_r x_ci)))))
|
||||
((Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_i)
|
||||
(in-hole ((in-hole Θ_p Θ_m) t_i) ((elim x_D U) t_P)))
|
||||
(side-condition (memq (term x_ci) (term (Δ-ref-constructors Δ x_D))))]
|
||||
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_nr) hole])
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Dynamic semantics
|
||||
;;; The majority of this section is dedicated to evaluation of (elim x U), the eliminator for the
|
||||
;;; inductively defined type x with a motive whose result is in universe U
|
||||
|
||||
(define-extended-language tt-redL tt-ctxtL
|
||||
;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim. However,
|
||||
;; determining whether or not it is partially applied cannot be done with the grammar alone.
|
||||
(v ::= x U (Π (x : t) t) (λ (x : t) t) (elim x U) (in-hole Θv x) (in-hole Θv (elim x U)))
|
||||
(Θv ::= hole (Θv v))
|
||||
;; call-by-value, plus reduce under Π (helps with typing checking)
|
||||
(E ::= hole (E e) (v E) (Π (x : v) E) (Π (x : E) e)))
|
||||
|
||||
(define Θv? (redex-match? tt-redL Θv))
|
||||
(define E? (redex-match? tt-redL E))
|
||||
(define v? (redex-match? tt-redL v))
|
||||
|
||||
(define current-Δ (make-parameter (make-empty-Δ)))
|
||||
(define tt-->
|
||||
(reduction-relation tt-redL
|
||||
(--> (in-hole E ((λ (x : t_0) t_1) t_2))
|
||||
(in-hole E (subst t_1 x t_2))
|
||||
-->β)
|
||||
(--> (in-hole E (in-hole Θv ((elim x_D U) v_P)))
|
||||
(in-hole E (in-hole Θ_r (in-hole Θv_i v_mi)))
|
||||
#|
|
||||
| The elim form must appear applied like so:
|
||||
| (elim x_D U v_P m_0 ... m_i m_j ... m_n p ... (c_i a ...))
|
||||
|
|
||||
| Where:
|
||||
| x_D is the inductive being eliminated
|
||||
| U is the universe of the result of the motive
|
||||
| v_P is the motive
|
||||
| m_{0..n} are the methods
|
||||
| p ... are the parameters of x_D
|
||||
| c_i is a constructor of x_d
|
||||
| a ... are the arguments to c_i
|
||||
| Unfortunately, Θ contexts turn all this inside out:
|
||||
| TODO: Write better abstractions for this notation
|
||||
|#
|
||||
(where Δ ,(current-Δ))
|
||||
;; Split Θv into its components: the paramters Θv_P for x_D, the methods Θv_m for x_D, and
|
||||
;; the discriminant: the constructor x_ci applied to its argument Θv_i
|
||||
(where (in-hole (Θv_p (in-hole Θv_i x_ci)) Θv_m) Θv)
|
||||
;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other
|
||||
;; arguments.
|
||||
(side-condition (equal? (term (Θ-length Θv_p)) (term (Ξ-length (Δ-ref-parameter-Ξ Δ x_D)))))
|
||||
;; Ensure x_ci is actually a constructor for x_D
|
||||
(where (x_c* ...) (Δ-ref-constructors Δ x_D))
|
||||
(side-condition (memq (term x_ci) (term (x_c* ...))))
|
||||
;; There should be a number of methods equal to the number of constructors; to ensure E
|
||||
;; doesn't capture methods and Θv_m doesn't capture other arguments
|
||||
(side-condition (equal? (length (term (x_c* ...))) (term (Θ-length Θv_m))))
|
||||
;; Find the method for constructor x_ci, relying on the order of the arguments.
|
||||
(where v_mi (Θ-ref Θv_m (Δ-constructor-index Δ x_D x_ci)))
|
||||
;; Generate the inductive recursion
|
||||
(where Θ_r (Δ-inductive-elim Δ x_D U v_P Θv_p Θv_m Θv_i))
|
||||
-->elim)))
|
||||
|
||||
(define reduce-memoize (make-hash))
|
||||
(define-metafunction tt-redL
|
||||
step : Δ e -> e
|
||||
[(step Δ e)
|
||||
e_r
|
||||
(where e_r ,(dict-ref reduce-memoize (term e)
|
||||
(thunk
|
||||
(parameterize ([current-Δ (term Δ)])
|
||||
(let ([x (car (apply-reduction-relation tt--> (term e)))])
|
||||
(dict-set! reduce-memoize (term e_r) x)
|
||||
x)))))])
|
||||
|
||||
(define-metafunction tt-redL
|
||||
reduce : Δ e -> e
|
||||
[(reduce Δ e)
|
||||
e_r
|
||||
(where e_r ,(dict-ref reduce-memoize (term e)
|
||||
(thunk
|
||||
(parameterize ([current-Δ (term Δ)])
|
||||
(let ([x (car (apply-reduction-relation* tt--> (term e) #:cache-all? #t))])
|
||||
(dict-set! reduce-memoize (term e_r) x)
|
||||
x)))))])
|
||||
|
||||
(define-judgment-form tt-redL
|
||||
#:mode (equivalent I I I)
|
||||
#:contract (equivalent Δ t t)
|
||||
|
||||
[(where t_2 (reduce Δ t_0))
|
||||
(where t_3 (reduce Δ t_1))
|
||||
(side-condition (α-equivalent? t_2 t_3))
|
||||
----------------- "≡-αβ"
|
||||
(equivalent Δ t_0 t_1)])
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Type checking and synthesis
|
||||
|
||||
(define-extended-language tt-typingL tt-redL
|
||||
;; NB: There may be a bijection between Γ and Ξ. That's interesting.
|
||||
;; NB: Also a bijection between Γ and a list of maps from x to t.
|
||||
(Γ ::= ∅ (Γ x : t)))
|
||||
(define Γ? (redex-match? tt-typingL Γ))
|
||||
|
||||
(define-metafunction tt-typingL
|
||||
Γ-union : Γ Γ -> Γ
|
||||
[(Γ-union Γ ∅) Γ]
|
||||
[(Γ-union Γ_2 (Γ_1 x : t))
|
||||
((Γ-union Γ_2 Γ_1) x : t)])
|
||||
|
||||
(define-metafunction tt-typingL
|
||||
Γ-set : Γ x t -> Γ
|
||||
[(Γ-set Γ x t) (Γ x : t)])
|
||||
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction tt-typingL
|
||||
Γ-ref : Γ x -> t or #f
|
||||
[(Γ-ref ∅ x) #f]
|
||||
[(Γ-ref (Γ x : t) x) t]
|
||||
[(Γ-ref (Γ x_0 : t_0) x_1) (Γ-ref Γ x_1)])
|
||||
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction tt-typingL
|
||||
Γ-remove : Γ x -> Γ
|
||||
[(Γ-remove ∅ x) ∅]
|
||||
[(Γ-remove (Γ x : t) x) Γ]
|
||||
[(Γ-remove (Γ x_0 : t_0) x_1) (Γ-remove Γ x_1)])
|
||||
|
||||
(define-metafunction tt-typingL
|
||||
nonpositive : x t -> #t or #f
|
||||
[(nonpositive x (in-hole Θ x))
|
||||
#t]
|
||||
[(nonpositive x (Π (x_0 : (in-hole Θ x)) t))
|
||||
#f]
|
||||
[(nonpositive x (Π (x_0 : t_0) t))
|
||||
,(and (term (positive x t_0)) (term (nonpositive x t)))]
|
||||
[(nonpositive x t) #t])
|
||||
|
||||
(define-metafunction tt-typingL
|
||||
positive : x t -> #t or #f
|
||||
[(positive x (in-hole Θ x))
|
||||
#f]
|
||||
[(positive x (Π (x_0 : (in-hole Θ x)) t))
|
||||
(positive x t)]
|
||||
[(positive x (Π (x_0 : t_0) t))
|
||||
,(and (term (nonpositive x t_0)) (term (positive x t)))]
|
||||
[(positive x t) #t])
|
||||
|
||||
(define-metafunction tt-typingL
|
||||
positive* : x (t ...) -> #t or #f
|
||||
[(positive* x_D ()) #t]
|
||||
[(positive* x_D (t_c t_rest ...))
|
||||
;; Replace the result of the constructor with (Unv 0), to avoid the result being considered a
|
||||
;; nonpositive position.
|
||||
,(and (term (positive x_D (in-hole Ξ (Unv 0)))) (term (positive* x_D (t_rest ...))))
|
||||
(where (in-hole Ξ (in-hole Θ x_D)) t_c)])
|
||||
|
||||
;; Holds when the signature Δ and typing context Γ are well-formed.
|
||||
(define-judgment-form tt-typingL
|
||||
#:mode (wf I I)
|
||||
#:contract (wf Δ Γ)
|
||||
|
||||
[(side-condition ,(empty-Δ? (term Δ)))
|
||||
----------------- "WF-Empty"
|
||||
(wf Δ ∅)]
|
||||
|
||||
[(type-infer Δ Γ t t_0)
|
||||
(wf Δ Γ)
|
||||
----------------- "WF-Var"
|
||||
(wf Δ (Γ x : t))]
|
||||
|
||||
[(side-condition ,(not (empty-Δ? (term Δ_1))))
|
||||
;; TODO: Depends on order, but "first" here is nondeterministic/unspecified
|
||||
(where x_D ,(dict-iterate-key (term Δ_1) (dict-iterate-first (term Δ_1))))
|
||||
(where t_D (Δ-ref-type Δ_1 x_D))
|
||||
(where (x_c ...) (Δ-ref-constructors Δ_1 x_D))
|
||||
(where ((name t_c (in-hole Ξ (in-hole Θ x_D*))) ...)
|
||||
((Δ-ref-type Δ_1 x_c) ...))
|
||||
(where Δ ,(dict-remove (term Δ_1) (term x_D)))
|
||||
(wf Δ ∅)
|
||||
(type-infer Δ ∅ t_D U_D)
|
||||
(type-infer Δ (∅ x_D : t_D) t_c U_c) ...
|
||||
;; NB: Ugh this should be possible with pattern matching alone ....
|
||||
(side-condition ,(map (curry equal? (term x_D)) (term (x_D* ...))))
|
||||
(side-condition (positive* x_D (t_c ...)))
|
||||
----------------- "WF-Inductive"
|
||||
(wf Δ_1 ∅)])
|
||||
|
||||
;; TODO: Bi-directional and inference?
|
||||
;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
|
||||
|
||||
;; Holds when e has type t under signature Δ and typing context Γ
|
||||
(define-judgment-form tt-typingL
|
||||
#:mode (type-infer I I I O)
|
||||
#:contract (type-infer Δ Γ e t)
|
||||
|
||||
[(wf Δ Γ)
|
||||
(unv-type U_0 U_1)
|
||||
----------------- "DTR-Unv"
|
||||
(type-infer Δ Γ U_0 U_1)]
|
||||
|
||||
[(wf Δ Γ)
|
||||
(where t (Δ-ref-type Δ x))
|
||||
----------------- "DTR-Inductive"
|
||||
(type-infer Δ Γ x t)]
|
||||
|
||||
[(wf Δ Γ)
|
||||
(where t (Γ-ref Γ x))
|
||||
----------------- "DTR-Start"
|
||||
(type-infer Δ Γ x t)]
|
||||
|
||||
[(type-infer Δ (Γ x : t_0) e t_1)
|
||||
(type-infer Δ Γ (Π (x : t_0) t_1) U)
|
||||
----------------- "DTR-Abstraction"
|
||||
(type-infer Δ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
|
||||
|
||||
[(type-infer Δ Γ t_0 U_1)
|
||||
(type-infer Δ (Γ x : t_0) t U_2)
|
||||
(unv-pred U_1 U_2 U)
|
||||
----------------- "DTR-Product"
|
||||
(type-infer Δ Γ (Π (x : t_0) t) U)]
|
||||
|
||||
[(type-infer Δ Γ e_0 t)
|
||||
;; Cannot rely on type-infer producing normal forms.
|
||||
(where (Π (x_0 : t_0) t_1) (reduce Δ t))
|
||||
(type-check Δ Γ e_1 t_0)
|
||||
(where t_3 (subst t_1 x_0 e_1))
|
||||
----------------- "DTR-Application"
|
||||
(type-infer Δ Γ (e_0 e_1) t_3)]
|
||||
|
||||
[(where t (Δ-elim-type Δ D U))
|
||||
(type-infer Δ Γ t U_e)
|
||||
----------------- "DTR-Elim_D"
|
||||
(type-infer Δ Γ (elim D U) t)])
|
||||
|
||||
(define-judgment-form tt-typingL
|
||||
#:mode (type-check I I I I)
|
||||
#:contract (type-check Δ Γ e t)
|
||||
|
||||
[(type-infer Δ Γ e t_0)
|
||||
(equivalent Δ t t_0)
|
||||
----------------- "DTR-Check"
|
||||
(type-check Δ Γ e t)])
|
||||
|
||||
|
||||
(module+ test
|
||||
(require rackunit)
|
||||
(define-term Δt (Δ-set ,(make-empty-Δ) True (Unv 0) ((T : True))))
|
||||
(check-false
|
||||
(judgment-holds (type-check ,(make-empty-Δ) ∅ T True)))
|
||||
(check-true
|
||||
(judgment-holds (type-check Δt ∅ T True)))
|
||||
(check-true
|
||||
(judgment-holds (type-check Δt ∅ True (Unv 0))))
|
||||
(check-true
|
||||
(judgment-holds (wf Δt ∅)))
|
||||
(check-true
|
||||
(judgment-holds (wf Δt (∅ P : (Unv 0)))))
|
||||
(check-true
|
||||
(judgment-holds (type-infer Δt ∅ (Π (P : (Unv 0)) True) t))))
|
493
cur-lib/cur/curnel/hybrid-lang.rkt
Normal file
493
cur-lib/cur/curnel/hybrid-lang.rkt
Normal file
|
@ -0,0 +1,493 @@
|
|||
#lang racket/base
|
||||
;; This module just provide module language sugar over the redex model.
|
||||
|
||||
(require
|
||||
"hybrid-core.rkt"
|
||||
redex/reduction-semantics
|
||||
racket/provide-syntax
|
||||
(for-syntax
|
||||
(except-in racket import)
|
||||
syntax/parse
|
||||
racket/syntax
|
||||
(except-in racket/provide-transform export)
|
||||
racket/require-transform
|
||||
"hybrid-core.rkt"
|
||||
redex/reduction-semantics))
|
||||
(provide
|
||||
;; Basic syntax
|
||||
for-syntax
|
||||
only-in
|
||||
except-in
|
||||
all-defined-out
|
||||
rename-in
|
||||
rename-out
|
||||
prefix-out
|
||||
prefix-in
|
||||
submod
|
||||
#%module-begin
|
||||
(rename-out
|
||||
[dep-module+ module+]
|
||||
[dep-provide provide]
|
||||
[dep-require require]
|
||||
|
||||
[dep-lambda lambda]
|
||||
[dep-lambda λ]
|
||||
[dep-app #%app]
|
||||
|
||||
[dep-forall forall]
|
||||
[dep-forall ∀]
|
||||
|
||||
[dep-inductive data]
|
||||
|
||||
[dep-elim elim]
|
||||
|
||||
[dep-top #%top]
|
||||
[dep-top-interaction #%top-interaction]
|
||||
|
||||
; [dep-datum #%datum]
|
||||
[dep-define define]
|
||||
[dep-void void])
|
||||
begin
|
||||
Type
|
||||
;; DYI syntax extension
|
||||
define-syntax
|
||||
begin-for-syntax
|
||||
define-for-syntax
|
||||
syntax-case
|
||||
syntax-rules
|
||||
define-syntax-rule
|
||||
(for-syntax
|
||||
(all-from-out syntax/parse)
|
||||
(all-from-out racket)
|
||||
(all-from-out racket/syntax)
|
||||
cur->datum
|
||||
cur-expand
|
||||
type-infer/syn
|
||||
type-check/syn?
|
||||
normalize/syn
|
||||
step/syn
|
||||
cur-equal?))
|
||||
|
||||
(begin-for-syntax
|
||||
;; TODO: Gamma and Delta seem to get reset inside a module+
|
||||
(define gamma
|
||||
(make-parameter
|
||||
(term ∅)
|
||||
(lambda (x)
|
||||
(unless (Γ? x)
|
||||
(error 'core-error "We built a bad term environment ~s" x))
|
||||
x)))
|
||||
|
||||
(define delta
|
||||
(make-parameter
|
||||
(make-empty-Δ)
|
||||
(lambda (x)
|
||||
(unless (Δ? x)
|
||||
(error 'core-error "We built a bad inductive declaration ~s" x))
|
||||
x)))
|
||||
|
||||
;; These should be provided by core, so details of envs can be hidden.
|
||||
(define (extend-Γ/term env x t)
|
||||
(term (Γ-set ,(env) ,x ,t)))
|
||||
|
||||
(define (extend-Γ/term! env x t) (env (extend-Γ/term env x t)))
|
||||
|
||||
(define (extend-Γ/syn env x t)
|
||||
(extend-Γ/term env (syntax->datum x) (cur->datum t)))
|
||||
|
||||
(define (extend-Γ/syn! env x t) (env (extend-Γ/syn env x t)))
|
||||
|
||||
(define (extend-Δ/term env x t c*)
|
||||
(term (Δ-set ,(env) ,x ,t (,@c*))))
|
||||
|
||||
(define (extend-Δ/term! env x t c*)
|
||||
(env (extend-Δ/term env x t c*)))
|
||||
|
||||
(define (extend-Δ/syn env x t c*)
|
||||
(extend-Δ/term env (syntax->datum x) (cur->datum t)
|
||||
(for/list ([c (syntax->list c*)])
|
||||
(syntax-case c ()
|
||||
[(c : ct)
|
||||
(parameterize ([gamma (extend-Γ/syn gamma x t)])
|
||||
(term (,(syntax->datum #'c) : ,(cur->datum #'ct))))]))))
|
||||
|
||||
(define (extend-Δ/syn! env x t c*)
|
||||
(env (extend-Δ/syn env x t c*)))
|
||||
|
||||
(define subst? (list/c (listof x?) (listof e?)))
|
||||
(define bind-subst
|
||||
(make-parameter
|
||||
(list null null)
|
||||
(lambda (x)
|
||||
(unless (subst? x)
|
||||
(error 'core-error "We build a bad subst ~s" x))
|
||||
x)))
|
||||
|
||||
(define (add-binding/term! x t)
|
||||
(let ([vars (first (bind-subst))]
|
||||
[exprs (second (bind-subst))])
|
||||
(bind-subst (list (cons x vars) (cons t exprs)))))
|
||||
|
||||
(define (subst-bindings t)
|
||||
(term (subst-all ,t ,(first (bind-subst)) ,(second (bind-subst)))))
|
||||
|
||||
(define (type-infer/term t)
|
||||
(let ([t (judgment-holds (type-infer ,(delta) ,(gamma) ,(subst-bindings t) t_0) t_0)])
|
||||
(and (pair? t) (car t))))
|
||||
|
||||
(define (type-check/term? e t)
|
||||
(and (judgment-holds (type-check ,(delta) ,(gamma) ,(subst-bindings e) ,(subst-bindings t))) #t))
|
||||
|
||||
;; TODO: Blanket disarming is probably a bad idea.
|
||||
(define orig-insp (variable-reference->module-declaration-inspector (#%variable-reference)))
|
||||
(define (disarm syn) (syntax-disarm syn orig-insp))
|
||||
|
||||
;; Locally expand everything down to core forms.
|
||||
(define (core-expand syn)
|
||||
(disarm
|
||||
(local-expand
|
||||
syn
|
||||
'expression
|
||||
(append (syntax-e #'(term reduce subst-all dep-top #%app λ Π elim Unv #%datum void))))))
|
||||
|
||||
;; Only type-check at the top-level, to prevent exponential
|
||||
;; type-checking. Redex is expensive enough.
|
||||
(define inner-expand? (make-parameter #f))
|
||||
|
||||
;; Reifiy cur syntax into curnel datum
|
||||
(define (cur->datum syn)
|
||||
;; Main loop; avoid type
|
||||
(define reified-term
|
||||
;; TODO: This results in less good error messages. Add an
|
||||
;; algorithm to find the smallest ill-typed term.
|
||||
(parameterize ([inner-expand? #t])
|
||||
(let cur->datum ([syn syn])
|
||||
(syntax-parse (core-expand syn)
|
||||
#:literals (term reduce #%app subst-all)
|
||||
#:datum-literals (elim Π λ : Unv)
|
||||
[x:id (syntax->datum #'x)]
|
||||
[(subst-all e _ _) (syntax->datum #'e)]
|
||||
[(reduce Δ e) (cur->datum #'e)]
|
||||
[(term e) (cur->datum #'e)]
|
||||
[(Unv i) (term (Unv ,(syntax->datum #'i)))]
|
||||
;; TODO: should really check that b is one of the binders
|
||||
;; Maybe make a syntax class for the binders, core forms,
|
||||
;; etc.
|
||||
[(b:id (x:id : t) e)
|
||||
(let* ([x (syntax->datum #'x)]
|
||||
[t (cur->datum #'t)]
|
||||
[e (parameterize ([gamma (extend-Γ/term gamma x t)])
|
||||
(cur->datum #'e))])
|
||||
(term (,(syntax->datum #'b) (,x : ,t) ,e)))]
|
||||
[(elim t1 t2)
|
||||
(let* ([t1 (cur->datum #'t1)]
|
||||
[t2 (cur->datum #'t2)])
|
||||
(term (elim ,t1 ,t2)))]
|
||||
[(#%app e1 e2)
|
||||
(term (,(cur->datum #'e1) ,(cur->datum #'e2)))]))))
|
||||
(unless (or (inner-expand?) (type-infer/term reified-term))
|
||||
(printf "Delta: ~s~nGamma: ~s~n" (delta) (gamma))
|
||||
(raise-syntax-error 'cur "term is ill-typed:" reified-term syn))
|
||||
reified-term)
|
||||
|
||||
(define (datum->cur syn t)
|
||||
(match t
|
||||
[(list (quote term) e)
|
||||
(quasisyntax/loc
|
||||
syn
|
||||
(datum->cur syn e))]
|
||||
[(list (quote Unv) i)
|
||||
(quasisyntax/loc
|
||||
syn
|
||||
(Type #,i))]
|
||||
[(list (quote Π) (list x (quote :) t) body)
|
||||
(quasisyntax/loc
|
||||
syn
|
||||
(dep-forall (#,(datum->syntax syn x) : #,(datum->cur syn t)) #,(datum->cur syn body)))]
|
||||
[(list (quote λ) (list x (quote :) t) body)
|
||||
(quasisyntax/loc
|
||||
syn
|
||||
(dep-lambda (#,(datum->syntax syn x) : #,(datum->cur syn t)) #,(datum->cur syn body)))]
|
||||
[(list (list (quote elim) t1) t2)
|
||||
(quasisyntax/loc
|
||||
syn
|
||||
(dep-elim #,(datum->cur syn t1) #,(datum->cur syn t2)))]
|
||||
[(list e1 e2)
|
||||
(quasisyntax/loc
|
||||
syn
|
||||
(dep-app #,(datum->cur syn e1) #,(datum->cur syn e2)))]
|
||||
[_
|
||||
(quasisyntax/loc
|
||||
syn
|
||||
#,(datum->syntax syn t))]))
|
||||
|
||||
(define (eval-cur syn)
|
||||
(term (reduce ,(delta) ,(subst-bindings (cur->datum syn)))))
|
||||
|
||||
(define (syntax->curnel-syntax syn)
|
||||
(quasisyntax/loc
|
||||
syn
|
||||
;; TODO: this subst-all should be #,(subst-bindings (cur->datum syn)), but doesn't work
|
||||
(term (reduce #,(delta) (subst-all #,(cur->datum syn) #,(first (bind-subst)) #,(second (bind-subst)))))))
|
||||
|
||||
;; Reflection tools
|
||||
|
||||
(define (normalize/syn syn)
|
||||
(datum->cur
|
||||
syn
|
||||
(eval-cur syn)))
|
||||
|
||||
(define (step/syn syn)
|
||||
(datum->cur
|
||||
syn
|
||||
(term (step ,(delta) ,(subst-bindings (cur->datum syn))))))
|
||||
|
||||
;; Are these two terms equivalent in type-systems internal equational reasoning?
|
||||
(define (cur-equal? e1 e2)
|
||||
(and (judgment-holds (equivalent ,(delta) ,(eval-cur e1) ,(eval-cur e2))) #t))
|
||||
|
||||
;; TODO: Document local-env
|
||||
(define (type-infer/syn syn #:local-env [env '()])
|
||||
(parameterize ([gamma (for/fold ([gamma (gamma)])
|
||||
([(x t) (in-dict env)])
|
||||
(extend-Γ/syn (thunk gamma) x t))])
|
||||
(let ([t (type-infer/term (eval-cur syn))])
|
||||
(and t (datum->cur syn t)))))
|
||||
|
||||
(define (type-check/syn? syn type)
|
||||
(type-check/term? (eval-cur syn) (eval-cur type)))
|
||||
|
||||
;; Takes a Cur term syn and an arbitrary number of identifiers ls. The cur term is
|
||||
;; expanded until expansion reaches a Curnel form, or one of the
|
||||
;; identifiers in ls.
|
||||
(define (cur-expand syn . ls)
|
||||
(disarm
|
||||
(local-expand
|
||||
syn
|
||||
'expression
|
||||
(append (syntax-e #'(Type dep-inductive dep-lambda dep-app dep-elim dep-forall dep-top))
|
||||
ls)))))
|
||||
|
||||
;; -----------------------------------------------------------------
|
||||
;; Require/provide macros
|
||||
|
||||
#| TODO NB XXX
|
||||
| This is code some of the most hacky awful code I've ever written. But it works. ish
|
||||
|#
|
||||
(begin-for-syntax
|
||||
(define envs (list #'(void)))
|
||||
|
||||
(define (cur-identifier-bound? id)
|
||||
(let ([x (syntax->datum id)])
|
||||
(and (x? x)
|
||||
(or (term (Γ-ref ,(gamma) ,x))
|
||||
(term (Δ-ref-type ,(delta) ,x))))))
|
||||
|
||||
(define (filter-cur-exports syn modes)
|
||||
(partition (compose cur-identifier-bound? export-local-id)
|
||||
(apply append (map (lambda (e) (expand-export e modes))
|
||||
(syntax->list syn))))))
|
||||
(define-syntax extend-env-and-provide
|
||||
(make-provide-transformer
|
||||
(lambda (syn modes)
|
||||
(syntax-case syn ()
|
||||
[(_ e ...)
|
||||
(let-values ([(cur ~cur) (filter-cur-exports #'(e ...) modes)])
|
||||
#| TODO: Ignoring the built envs for now
|
||||
(set! envs (for/list ([e cur])
|
||||
(let* ([x (syntax->datum (export-local-id e))]
|
||||
[t (type-infer/term x)]
|
||||
[env (if (term (lookup ,(gamma) ,x)) #'gamma #'delta)])
|
||||
#`(extend-env/term! #,env #,(export-out-sym e) #,t))))
|
||||
|#
|
||||
~cur)]))))
|
||||
|
||||
(define-syntax (export-envs syn)
|
||||
(syntax-case syn ()
|
||||
[(_ gamma-out delta-out bind-out)
|
||||
(begin
|
||||
#`(begin-for-syntax
|
||||
(define gamma-out (term #,(gamma)))
|
||||
(define delta-out (term #,(delta)))
|
||||
(define bind-out '#,(bind-subst))))]))
|
||||
|
||||
;; TODO: This can only handle a single provide form, otherwise generates multiple *-out
|
||||
(define-syntax (dep-provide syn)
|
||||
(syntax-case syn ()
|
||||
[(_ e ...)
|
||||
(begin
|
||||
#| TODO NB:
|
||||
| Ignoring the built envs above, for now. The local-lift export seems to get executed before
|
||||
| the filtered environment is built.
|
||||
|#
|
||||
;; TODO: rename out will need to rename variables in gamma and ; delta.
|
||||
(syntax-local-lift-module-end-declaration
|
||||
#`(export-envs gamma-out delta-out bind-out))
|
||||
#`(provide (extend-env-and-provide e ...)
|
||||
(for-syntax gamma-out delta-out bind-out)))]))
|
||||
(begin-for-syntax
|
||||
(define out-gammas #`())
|
||||
(define out-deltas #`())
|
||||
(define out-binds #`())
|
||||
(define gn 0)
|
||||
(define sn 0)
|
||||
(define bn 0)
|
||||
(define (filter-cur-imports syn)
|
||||
(for/fold ([imports '()]
|
||||
[sources '()])
|
||||
([req-spec (syntax->list syn)])
|
||||
(let-values ([(more-imports more-sources) (expand-import req-spec)])
|
||||
(values (for/fold ([imports imports])
|
||||
([imp more-imports])
|
||||
(cond
|
||||
[(equal? (import-src-sym imp) 'gamma-out)
|
||||
(let ([new-id (format-id (import-orig-stx imp)
|
||||
"gamma-out~a" gn)])
|
||||
;; TODO: Fewer set!s
|
||||
;; TODO: Do not DIY gensym
|
||||
(set! gn (add1 gn))
|
||||
(set! out-gammas
|
||||
#`(#,@out-gammas (gamma (term (Γ-union
|
||||
,(gamma)
|
||||
,#,new-id)))))
|
||||
(cons (struct-copy import imp [local-id new-id])
|
||||
imports))]
|
||||
;; TODO: Many shared code between these two clauses
|
||||
[(equal? (import-src-sym imp) 'delta-out)
|
||||
(let ([new-id (format-id (import-orig-stx imp)
|
||||
"delta-out~a" sn)])
|
||||
;; TODO: Fewer set!s
|
||||
;; TODO: Do not DIY gensym
|
||||
(set! sn (add1 sn))
|
||||
(set! out-deltas
|
||||
#`(#,@out-deltas (delta (term (Δ-union
|
||||
,(delta)
|
||||
,#,new-id)))))
|
||||
(cons (struct-copy import imp [local-id new-id])
|
||||
imports))]
|
||||
;; TODO: Many shared code between these two clauses
|
||||
[(equal? (import-src-sym imp) 'bind-out)
|
||||
(let ([new-id (format-id (import-orig-stx imp)
|
||||
"bind-out~a" bn)])
|
||||
;; TODO: Fewer set!s
|
||||
;; TODO: Do not DIY gensym
|
||||
(set! bn (add1 bn))
|
||||
(set! out-binds
|
||||
#`(#,@out-binds (bind-subst (list (append
|
||||
(first #,new-id)
|
||||
(first (bind-subst)))
|
||||
(append
|
||||
(second #,new-id)
|
||||
(second (bind-subst)))))))
|
||||
(cons (struct-copy import imp [local-id new-id])
|
||||
imports))]
|
||||
[else (cons imp imports)]))
|
||||
(append sources more-sources))))))
|
||||
|
||||
(define-syntax extend-env-and-require
|
||||
(make-require-transformer
|
||||
(lambda (syn)
|
||||
(syntax-case syn ()
|
||||
[(_ e ...) (filter-cur-imports #'(e ...))]))))
|
||||
|
||||
;; TODO: rename in will need to rename variables in gamma and delta.
|
||||
(define-syntax (import-envs syn)
|
||||
(syntax-case syn ()
|
||||
[(_) #`(begin-for-syntax #,@out-gammas #,@out-deltas
|
||||
#,@out-binds)]))
|
||||
|
||||
(define-syntax (dep-require syn)
|
||||
(syntax-case syn ()
|
||||
[(_ e ...)
|
||||
#`(begin
|
||||
(require (extend-env-and-require e ...))
|
||||
(import-envs))]))
|
||||
|
||||
(define-syntax (dep-module+ syn)
|
||||
(syntax-case syn ()
|
||||
[(_ name body ...)
|
||||
#`(module+ name
|
||||
(begin-for-syntax
|
||||
(gamma (term #,(gamma)))
|
||||
(delta (term #,(delta)))
|
||||
(bind-subst '#,(bind-subst)))
|
||||
body ...)]))
|
||||
|
||||
;; -----------------------------------------------------------------
|
||||
;; Core wrapper macros
|
||||
;;
|
||||
;; TODO: Can these be simplified further?
|
||||
(define-syntax (dep-lambda syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ (x : t) e)
|
||||
(syntax->curnel-syntax
|
||||
(quasisyntax/loc syn (λ (x : t) e)))]))
|
||||
|
||||
(define-syntax (dep-app syn)
|
||||
(syntax-case syn ()
|
||||
[(_ e1 e2)
|
||||
(syntax->curnel-syntax
|
||||
(quasisyntax/loc syn (#%app e1 e2)))]))
|
||||
|
||||
(define-syntax (dep-forall syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ (x : t) e)
|
||||
(syntax->curnel-syntax
|
||||
(quasisyntax/loc syn (Π (x : t) e)))]))
|
||||
|
||||
(define-syntax (Type syn)
|
||||
(syntax-case syn ()
|
||||
[(_ i)
|
||||
(syntax->curnel-syntax
|
||||
(quasisyntax/loc syn (Unv i)))]
|
||||
[_ (quasisyntax/loc syn (Type 0))]))
|
||||
|
||||
(define-syntax (dep-inductive syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ i : ti (x1 : t1) ...)
|
||||
(begin
|
||||
(extend-Δ/syn! delta #'i #'ti #'((x1 : t1) ...))
|
||||
#'(void))]))
|
||||
|
||||
(define-syntax (dep-elim syn)
|
||||
(syntax-case syn ()
|
||||
[(_ D T)
|
||||
(syntax->curnel-syntax
|
||||
(quasisyntax/loc syn (elim D T)))]))
|
||||
|
||||
(define-syntax-rule (dep-void) (void))
|
||||
|
||||
;; TODO: Not sure if this is the correct behavior for #%top
|
||||
(define-syntax (dep-top syn)
|
||||
(syntax-case syn ()
|
||||
[(_ . id)
|
||||
;; TODO NB FIXME: HACKS HACKS HACKS
|
||||
(let ([t (core-expand #'id)])
|
||||
(if (equal? (syntax->datum t) '(void))
|
||||
#'(void)
|
||||
(syntax->curnel-syntax t)))]))
|
||||
|
||||
(define-syntax (dep-top-interaction syn)
|
||||
(syntax-case syn ()
|
||||
[(_ . form)
|
||||
(begin
|
||||
;; TODO NB FIXME: HACKS
|
||||
#`(begin
|
||||
(export-envs gamma-out delta-out bind-out)
|
||||
(begin-for-syntax
|
||||
(define nm (map (lambda (x) (namespace-variable-value x #f (lambda x #t))) (namespace-mapped-symbols)))
|
||||
(bind-subst (first (memf subst? nm)))
|
||||
(gamma (first (memf Γ? nm)))
|
||||
(delta (first (memf Δ? nm))))
|
||||
form))]))
|
||||
|
||||
(define-syntax (dep-define syn)
|
||||
(syntax-parse syn
|
||||
[(_ id:id e)
|
||||
(let ([e (cur->datum #'e)]
|
||||
[id (syntax->datum #'id)])
|
||||
;; NB: Have to roll our own namespace rather than use built-in define so id is resolved at
|
||||
;; compile time in redex, and at runtime in racket.
|
||||
(extend-Γ/term! gamma id (type-infer/term e))
|
||||
(add-binding/term! id e)
|
||||
#'(void))]))
|
665
cur-test/cur/tests/hybrid-core.rkt
Normal file
665
cur-test/cur/tests/hybrid-core.rkt
Normal file
|
@ -0,0 +1,665 @@
|
|||
#lang racket/base
|
||||
;; TODO: Copy-paste of redex-core
|
||||
(require
|
||||
redex/reduction-semantics
|
||||
cur/curnel/hybrid-core
|
||||
rackunit
|
||||
racket/function
|
||||
(only-in racket/set set=?))
|
||||
(define-syntax-rule (check-holds (e ...))
|
||||
(check-true
|
||||
(judgment-holds (e ...))))
|
||||
(define-syntax-rule (check-not-holds (e ...))
|
||||
(check-false
|
||||
(judgment-holds (e ...))))
|
||||
(define-syntax-rule (check-equiv? e1 e2)
|
||||
(check (default-equiv) e1 e2))
|
||||
(define-syntax-rule (check-not-equiv? e1 e2)
|
||||
(check (compose not (default-equiv)) e1 e2))
|
||||
|
||||
(default-equiv (lambda (x y) (term (α-equivalent? ,x ,y))))
|
||||
|
||||
;; Syntax tests
|
||||
;; ------------------------------------------------------------------------
|
||||
|
||||
(define-term Type (Unv 0))
|
||||
(check-true (x? (term T)))
|
||||
(check-true (x? (term A)))
|
||||
(check-true (x? (term truth)))
|
||||
(check-true (x? (term zero)))
|
||||
(check-true (x? (term s)))
|
||||
(check-true (t? (term zero)))
|
||||
(check-true (t? (term s)))
|
||||
(check-true (x? (term nat)))
|
||||
(check-true (t? (term nat)))
|
||||
(check-true (t? (term A)))
|
||||
(check-true (t? (term S)))
|
||||
(check-true (U? (term (Unv 0))))
|
||||
(check-true (U? (term Type)))
|
||||
(check-true (e? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
|
||||
;; TODO: Rename these signatures, and use them in all future tests.
|
||||
(define Δ (term (Δ-set* ,(make-empty-Δ)
|
||||
(nat (Unv 0) ((zero : nat) (s : (Π (x : nat) nat))))
|
||||
(bool (Unv 0) ((true : bool) (false : bool))))))
|
||||
(define Δ0 (make-empty-Δ))
|
||||
(define Δ3 (term (Δ-set ,(make-empty-Δ) and (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ())))
|
||||
(define Δ4 (term (Δ-set ,(make-empty-Δ) and (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
((conj : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B))))))))))
|
||||
(check-true (Δ? Δ0))
|
||||
(check-true (Δ? Δ))
|
||||
(check-true (Δ? Δ4))
|
||||
(check-true (Δ? Δ3))
|
||||
(check-true (Δ? Δ4))
|
||||
(define sigma (term (Δ-set* ,(make-empty-Δ)
|
||||
(true (Unv 0) ((T : true)))
|
||||
(false (Unv 0) ())
|
||||
(equal (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
())
|
||||
(nat (Unv 0) ())
|
||||
(heap (Unv 0) ())
|
||||
(pre (Π (temp808 : heap) (Unv 0)) ()))))
|
||||
(displayln sigma)
|
||||
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ) (true (Unv 0) ((T : true)))))))
|
||||
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ) (false (Unv 0) ())))))
|
||||
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ) (equal (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
())))))
|
||||
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ) (nat (Unv 0) ())))))
|
||||
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ) (pre (Π (temp808 : heap) (Unv 0)) ())))))
|
||||
|
||||
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ) (true (Unv 0) ((T : true))) (false (Unv 0) ())))))
|
||||
(check-true (Δ? (term (Δ-set* ,(make-empty-Δ)
|
||||
(true (Unv 0) ((T : true)))
|
||||
(false (Unv 0) ())
|
||||
(equal (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
())))))
|
||||
(check-true (Δ? sigma))
|
||||
(check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B))))))
|
||||
|
||||
|
||||
;; α-equiv and subst tests
|
||||
;; ------------------------------------------------------------------------
|
||||
(check-true
|
||||
(term
|
||||
(α-equivalent?
|
||||
(Π (a : S) (Π (b : B) ((and S) B)))
|
||||
(subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))
|
||||
|
||||
;; Various accessor tests
|
||||
;; ------------------------------------------------------------------------
|
||||
|
||||
(check-equal?
|
||||
(term (Δ-key-by-constructor ,Δ zero))
|
||||
(term nat))
|
||||
(check-equal?
|
||||
(term (Δ-key-by-constructor ,Δ s))
|
||||
(term nat))
|
||||
|
||||
(check-equal?
|
||||
(term (Δ-ref-constructor-map ,Δ nat))
|
||||
(term ((zero : nat) (s : (Π (x : nat) nat)))))
|
||||
(check-equal?
|
||||
(term (Δ-ref-constructor-map ,sigma false))
|
||||
(term ()))
|
||||
|
||||
;; Telescope tests
|
||||
;; ------------------------------------------------------------------------
|
||||
;; Are these telescopes the same when filled with alpha-equivalent, and equivalently renamed, termed
|
||||
(define (telescope-equiv x y)
|
||||
(alpha-equivalent? ttL (term (in-hole ,x (Unv 0))) (term (in-hole ,y (Unv 0)))))
|
||||
(define-syntax-rule (check-telescope-equiv? e1 e2)
|
||||
(check telescope-equiv e1 e2))
|
||||
(define-syntax-rule (check-telescope-not-equiv? e1 e2)
|
||||
(check (compose not telescope-equiv) e1 e2))
|
||||
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-ref-parameter-Ξ ,Δ nat))
|
||||
(term hole))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-ref-parameter-Ξ ,Δ4 and))
|
||||
(term (Π (A : Type) (Π (B : Type) hole))))
|
||||
|
||||
(check-telescope-equiv?
|
||||
(term (Ξ-compose
|
||||
(Π (x : t_0) (Π (y : t_1) hole))
|
||||
(Π (z : t_2) (Π (a : t_3) hole))))
|
||||
(term (Π (x : t_0) (Π (y : t_1) (Π (z : t_2) (Π (a : t_3) hole))))))
|
||||
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat)))
|
||||
(term (Π (m-zero : ((λ (x : nat) nat) zero))
|
||||
(Π (m-s : (Π (x : nat) (Π (x-ih : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x))))) hole))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δ nat P))
|
||||
(term (Π (m-zero : (P zero))
|
||||
(Π (m-s : (Π (x : nat) (Π (ih-x : (P x)) (P (s x)))))
|
||||
hole))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat)))
|
||||
(term (Π (m-zero : ((λ (x : nat) nat) zero))
|
||||
(Π (m-s : (Π (x : nat) (Π (ih-x : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x)))))
|
||||
hole))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δ4 and (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))))
|
||||
(term (Π (m-conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B)
|
||||
((((λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
|
||||
A)
|
||||
B)
|
||||
((((conj A) B) a) b)))))))
|
||||
hole)))
|
||||
(check-true (x? (term false)))
|
||||
(check-true (Ξ? (term hole)))
|
||||
(check-true (t? (term (λ (y : false) (Π (x : Type) x)))))
|
||||
(check-true (redex-match? ttL ((x : t) ...) (term ())))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,sigma false (λ (y : false) (Π (x : Type) x))))
|
||||
(term hole))
|
||||
|
||||
;; Tests for inductive elimination
|
||||
;; ------------------------------------------------------------------------
|
||||
;; TODO: Insufficient tests, no tests of inductives with parameters, or complex induction.
|
||||
(check-true
|
||||
(redex-match? tt-ctxtL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole
|
||||
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(hole zero)))
|
||||
(term (hole (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
zero))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole
|
||||
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(hole (s zero))))
|
||||
(term (hole (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(s zero)))))
|
||||
|
||||
;; Tests for dynamic semantics
|
||||
;; ------------------------------------------------------------------------
|
||||
|
||||
(check-true (v? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (v? (term (refl Nat))))
|
||||
(check-true (v? (term ((refl Nat) z))))
|
||||
|
||||
;; TODO: Move equivalence up here, and use in these tests.
|
||||
(check-equiv? (term (reduce ∅ (Unv 0))) (term (Unv 0)))
|
||||
(check-equiv? (term (reduce ∅ ((λ (x : t) x) (Unv 0)))) (term (Unv 0)))
|
||||
(check-not-equiv? (term (reduce ∅ ((Π (x : t) x) (Unv 0)))) (term (Unv 0)))
|
||||
(check-not-equiv? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) x_0) (Unv 0)))))
|
||||
(term (Π (x : t) (Unv 0))))
|
||||
(check-not-equiv? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
|
||||
(term (Π (x : t) (x x))))
|
||||
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat)
|
||||
(s (s x)))))
|
||||
zero)))
|
||||
(term (s zero)))
|
||||
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat)
|
||||
(s (s x)))))
|
||||
(s zero))))
|
||||
(term (s (s zero))))
|
||||
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(s (s (s zero))))))
|
||||
(term (s (s (s (s zero))))))
|
||||
|
||||
(check-equiv?
|
||||
(term (reduce ,Δ
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s (s zero)))))
|
||||
(term (s (s (s (s zero))))))
|
||||
(check-equiv?
|
||||
(term (step ,Δ
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s (s zero)))))
|
||||
(term
|
||||
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
||||
(s zero))
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s zero)))))
|
||||
(check-equiv?
|
||||
(term (step ,Δ (step ,Δ
|
||||
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
||||
(s zero))
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s zero))))))
|
||||
(term
|
||||
((λ (ih-x1 : nat) (s ih-x1))
|
||||
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
||||
zero)
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
zero)))))
|
||||
|
||||
(define-syntax-rule (check-equivalent e1 e2)
|
||||
(check-holds (equivalent ∅ e1 e2)))
|
||||
(check-equivalent
|
||||
(λ (x : Type) x) (λ (y : Type) y))
|
||||
(check-equivalent
|
||||
(Π (x : Type) x) (Π (y : Type) y))
|
||||
|
||||
;; Test static semantics
|
||||
;; ------------------------------------------------------------------------
|
||||
|
||||
(check-true (term (positive* nat (nat))))
|
||||
(check-true (term (positive* nat ((Π (x : (Unv 0)) (Π (y : (Unv 0)) nat))))))
|
||||
(check-true (term (positive* nat ((Π (x : nat) nat)))))
|
||||
;; (nat -> nat) -> nat
|
||||
;; Not sure if this is actually supposed to pass
|
||||
(check-false (term (positive* nat ((Π (x : (Π (y : nat) nat)) nat)))))
|
||||
;; ((Unv 0) -> nat) -> nat
|
||||
(check-true (term (positive* nat ((Π (x : (Π (y : (Unv 0)) nat)) nat)))))
|
||||
;; (((nat -> (Unv 0)) -> nat) -> nat)
|
||||
(check-true (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) (Unv 0))) nat)) nat)))))
|
||||
;; Not sure if this is actually supposed to pass
|
||||
;; ((nat -> nat) -> nat) -> nat
|
||||
(check-false (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) nat)) nat)) nat)))))
|
||||
|
||||
(check-true (judgment-holds (wf ,Δ0 ∅)))
|
||||
(check-true (redex-match? tt-redL (in-hole Ξ (Unv 0)) (term (Unv 0))))
|
||||
(check-true (redex-match? tt-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat)))
|
||||
(term (Π (x : nat) nat))))
|
||||
(define (bindings-equal? l1 l2)
|
||||
(map set=? l1 l2))
|
||||
(check-pred
|
||||
(curry bindings-equal?
|
||||
(list (list
|
||||
(make-bind 'Ξ (term (Π (x : nat) hole)))
|
||||
(make-bind 'Φ (term hole))
|
||||
(make-bind 'Θ (term hole)))
|
||||
(list
|
||||
(make-bind 'Ξ (term hole))
|
||||
(make-bind 'Φ (term (Π (x : nat) hole)))
|
||||
(make-bind 'Θ (term hole)))))
|
||||
(map match-bindings (redex-match tt-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat)))
|
||||
(term (Π (x : nat) nat)))))
|
||||
(check-pred
|
||||
(curry bindings-equal?
|
||||
(list
|
||||
(list
|
||||
(make-bind 'Φ (term (Π (x : nat) hole)))
|
||||
(make-bind 'Θ (term hole)))))
|
||||
(map match-bindings (redex-match tt-redL (in-hole hole (in-hole Φ (in-hole Θ nat)))
|
||||
(term (Π (x : nat) nat)))))
|
||||
|
||||
(check-true
|
||||
(redex-match? tt-redL
|
||||
(in-hole hole (in-hole hole (in-hole hole nat)))
|
||||
(term nat)))
|
||||
(check-true
|
||||
(redex-match? tt-redL
|
||||
(in-hole hole (in-hole (Π (x : nat) hole) (in-hole hole nat)))
|
||||
(term (Π (x : nat) nat))))
|
||||
(check-holds (wf (Δ-set ,(make-empty-Δ) nat (Unv 0) ()) ∅))
|
||||
|
||||
(check-holds (wf ,Δ0 ∅))
|
||||
(check-holds (type-infer ,(make-empty-Δ) ∅ (Unv 0) U))
|
||||
(check-holds (type-infer ,(make-empty-Δ) (∅ nat : (Unv 0)) nat U))
|
||||
(check-holds (type-infer ,(make-empty-Δ) (∅ nat : (Unv 0)) (Π (x : nat) nat) U))
|
||||
(check-true (term (positive* nat (nat (Π (x : nat) nat)))))
|
||||
(check-holds
|
||||
(wf (Δ-set ,(make-empty-Δ) nat (Unv 0) ((zero : nat))) ∅))
|
||||
(check-holds
|
||||
(wf (Δ-set ,(make-empty-Δ) nat (Unv 0) ((s : (Π (x : nat) nat)))) ∅))
|
||||
(check-holds (wf ,Δ ∅))
|
||||
|
||||
;; TODO: Poor abstraction w.r.t. Δ
|
||||
(check-holds (wf ,Δ3 ∅))
|
||||
(check-holds (wf ,Δ4 ∅))
|
||||
(check-holds (wf (Δ-set ,(make-empty-Δ) truth (Unv 0) ()) ∅))
|
||||
(check-holds (wf ,(make-empty-Δ) (∅ x : (Unv 0))))
|
||||
(check-holds (wf (Δ-set ,(make-empty-Δ) nat (Unv 0) ()) (∅ x : nat)))
|
||||
(check-holds (wf (Δ-set ,(make-empty-Δ) nat (Unv 0) ()) (∅ x : (Π (x : nat) nat))))
|
||||
|
||||
(check-holds (type-infer ,(make-empty-Δ) ∅ (Unv 0) (Unv 1)))
|
||||
(check-holds (type-infer ,(make-empty-Δ) (∅ x : (Unv 0)) (Unv 0) (Unv 1)))
|
||||
(check-holds (type-infer ,(make-empty-Δ) (∅ x : (Unv 0)) x (Unv 0)))
|
||||
(check-holds (type-infer ,(make-empty-Δ) ((∅ x_0 : (Unv 0)) x_1 : (Unv 0))
|
||||
(Π (x_3 : x_0) x_1) (Unv 0)))
|
||||
(check-holds (type-infer ,(make-empty-Δ) (∅ x_0 : (Unv 0)) x_0 U_1))
|
||||
(check-holds (type-infer ,(make-empty-Δ) ((∅ x_0 : (Unv 0)) x_2 : x_0) (Unv 0) U_2))
|
||||
(check-holds (unv-pred (Unv 0) (Unv 0) (Unv 0)))
|
||||
(check-holds (type-infer ,(make-empty-Δ) (∅ x_0 : (Unv 0)) (Π (x_2 : x_0) (Unv 0)) t))
|
||||
|
||||
(check-holds (type-check ,(make-empty-Δ) ∅ (λ (x : (Unv 0)) x) (Π (x : (Unv 0)) (Unv 0))))
|
||||
(check-holds (type-check ,(make-empty-Δ) ∅ (λ (y : (Unv 0)) (λ (x : y) x))
|
||||
(Π (y : (Unv 0)) (Π (x : y) y))))
|
||||
|
||||
(check-equal? (list (term (Unv 1)))
|
||||
(judgment-holds
|
||||
(type-infer ,(make-empty-Δ) ((∅ x1 : (Unv 0)) x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0)))
|
||||
U)
|
||||
U))
|
||||
;; ---- Elim
|
||||
;; TODO: Clean up/Reorganize these tests
|
||||
(check-true
|
||||
(redex-match? tt-typingL
|
||||
(in-hole Θ_m (((elim x_D U) e_D) e_P))
|
||||
(term ((((elim truth Type) T) (Π (x : truth) (Unv 1))) (Unv 0)))))
|
||||
(define Δtruth (term (Δ-set ,(make-empty-Δ) truth (Unv 0) ((T : truth)))))
|
||||
(check-holds (type-infer ,Δtruth ∅ truth (in-hole Ξ U)))
|
||||
(check-holds (type-infer ,Δtruth ∅ T (in-hole Θ_ai truth)))
|
||||
(check-holds (type-infer ,Δtruth ∅ (λ (x : truth) (Unv 1))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ truth)) U))))
|
||||
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δtruth truth (λ (x : truth) (Unv 1))))
|
||||
(term (Π (m-T : ((λ (x : truth) (Unv 1)) T)) hole)))
|
||||
(check-holds (type-infer ,Δtruth ∅ (elim truth Type) t))
|
||||
(check-holds (type-check (Δ-set ,(make-empty-Δ) truth (Unv 0) ((T : truth)))
|
||||
∅
|
||||
((((elim truth (Unv 2)) (λ (x : truth) (Unv 1))) (Unv 0))
|
||||
T)
|
||||
(Unv 1)))
|
||||
(check-not-holds (type-check (Δ-set ,(make-empty-Δ) truth (Unv 0) ((T : truth)))
|
||||
∅
|
||||
((((elim truth (Unv 1)) Type) Type) T)
|
||||
(Unv 1)))
|
||||
(check-holds
|
||||
(type-infer ,(make-empty-Δ) ∅ (Π (x2 : (Unv 0)) (Unv 0)) U))
|
||||
(check-holds
|
||||
(type-infer ,(make-empty-Δ) (∅ x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))))
|
||||
t))
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ nat (in-hole Ξ U)))
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ zero (in-hole Θ_ai nat)))
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ (λ (x : nat) nat)
|
||||
(in-hole Ξ (Π (x : (in-hole Θ nat)) U))))
|
||||
(define-syntax-rule (nat-test syn ...)
|
||||
(check-holds (type-check ,Δ syn ...)))
|
||||
(nat-test ∅ (Π (x : nat) nat) (Unv 0))
|
||||
(nat-test ∅ (λ (x : nat) x) (Π (x : nat) nat))
|
||||
(nat-test ∅ (((((elim nat Type) (λ (x : nat) nat)) zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) x))) zero)
|
||||
nat)
|
||||
(nat-test ∅ nat (Unv 0))
|
||||
(nat-test ∅ zero nat)
|
||||
(nat-test ∅ s (Π (x : nat) nat))
|
||||
(nat-test ∅ (s zero) nat)
|
||||
;; TODO: Meta-function auto-currying and such
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ ((((elim nat (Unv 0)) (λ (x : nat) nat))
|
||||
zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||
t))
|
||||
(nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat))
|
||||
zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||
zero)
|
||||
nat)
|
||||
(nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
zero)
|
||||
nat)
|
||||
(nat-test ∅ (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)
|
||||
nat)
|
||||
(nat-test (∅ n : nat)
|
||||
(((((elim nat (Unv 0)) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) n)
|
||||
nat)
|
||||
(check-holds
|
||||
(type-check (Δ-set ,Δ bool (Unv 0) ((btrue : bool) (bfalse : bool)))
|
||||
(∅ n2 : nat)
|
||||
(((((elim nat (Unv 0)) (λ (x : nat) bool))
|
||||
btrue)
|
||||
(λ (x : nat) (λ (ih-x : bool) bfalse)))
|
||||
n2)
|
||||
bool))
|
||||
(check-not-holds
|
||||
(type-check ,Δ ∅
|
||||
((((elim nat (Unv 0)) nat) (s zero)) zero)
|
||||
nat))
|
||||
(define lam (term (λ (nat : (Unv 0)) nat)))
|
||||
(check-equivalent
|
||||
(Π (nat : (Unv 0)) (Unv 0))
|
||||
,(car (judgment-holds (type-infer ,Δ0 ∅ ,lam t) t)))
|
||||
(check-equivalent
|
||||
(Π (nat : (Unv 0)) (Unv 0))
|
||||
,(car (judgment-holds (type-infer ,Δ ∅ ,lam t) t)))
|
||||
(check-equivalent
|
||||
(Π (x : (Π (y : (Unv 0)) y)) nat)
|
||||
,(car (judgment-holds (type-infer (Δ-set ,(make-empty-Δ) nat (Unv 0) ()) ∅ (λ (x : (Π (y : (Unv 0)) y)) (x nat))
|
||||
t) t)))
|
||||
(check-equivalent
|
||||
(Π (y : (Unv 0)) (Unv 0))
|
||||
,(car (judgment-holds (type-infer (Δ-set ,(make-empty-Δ) nat (Unv 0) ()) ∅ (λ (y : (Unv 0)) y) t) t)))
|
||||
(check-equivalent
|
||||
(Unv 0)
|
||||
,(car (judgment-holds (type-infer (Δ-set ,(make-empty-Δ) nat (Unv 0) ()) ∅
|
||||
((λ (x : (Π (y : (Unv 0)) (Unv 0))) (x nat))
|
||||
(λ (y : (Unv 0)) y))
|
||||
t) t)))
|
||||
(check-equal?
|
||||
(list (term (Unv 0)) (term (Unv 1)))
|
||||
(judgment-holds
|
||||
(type-infer ,Δ4 ∅ (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))
|
||||
U) U))
|
||||
(check-holds
|
||||
(type-check ,Δ4 (∅ S : (Unv 0)) conj (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))
|
||||
(check-holds
|
||||
(type-check ,Δ4 (∅ S : (Unv 0))
|
||||
conj (Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : P) (Π (y : Q) ((and P) Q)))))))
|
||||
(check-holds
|
||||
(type-check ,Δ4 (∅ S : (Unv 0)) S (Unv 0)))
|
||||
(check-holds
|
||||
(type-check ,Δ4 (∅ S : (Unv 0)) (conj S)
|
||||
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
|
||||
(check-holds
|
||||
(type-check ,Δ4 (∅ S : (Unv 0)) (conj S)
|
||||
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
|
||||
(check-holds
|
||||
(type-check ,Δ4 ∅ (λ (S : (Unv 0)) (conj S))
|
||||
(Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))))
|
||||
(check-holds
|
||||
(type-check (Δ-set ,Δ4 true (Unv 0) ((tt : true))) ∅
|
||||
((((conj true) true) tt) tt)
|
||||
((and true) true)))
|
||||
(check-holds
|
||||
(type-infer ,Δ4 ∅ and (in-hole Ξ U_D)))
|
||||
(check-holds
|
||||
(type-infer (Δ-set ,Δ4 true (Unv 0) ((tt : true))) ∅
|
||||
((((conj true) true) tt) tt)
|
||||
(in-hole Θ and)))
|
||||
(check-holds
|
||||
(type-infer (Δ-set ,Δ4 true (Unv 0) ((tt : true))) ∅
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
|
||||
(check-holds
|
||||
(type-check (Δ-set ,Δ4 true (Unv 0) ((tt : true))) ∅
|
||||
((((((elim and (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
true))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) tt)))))
|
||||
true) true)
|
||||
((((conj true) true) tt) tt))
|
||||
true))
|
||||
(check-true (Γ? (term (((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q)))))
|
||||
(check-holds
|
||||
(type-infer ,Δ4 ∅ and (in-hole Ξ U)))
|
||||
(check-holds
|
||||
(type-infer ,Δ4 (((∅ P : Type) Q : Type) ab : ((and P) Q))
|
||||
ab (in-hole Θ and)))
|
||||
(check-true
|
||||
(redex-match? tt-redL
|
||||
(in-hole Ξ (Π (x : (in-hole Θ and)) U))
|
||||
(term (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0)))))))
|
||||
(check-holds
|
||||
(type-infer ,Δ4 (((∅ P : Type) Q : Type) ab : ((and P) Q))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A))))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ and)) U))))
|
||||
(check-holds
|
||||
(equivalent ,Δ4
|
||||
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))
|
||||
(Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : ((and P) Q)) (Unv 0))))))
|
||||
(check-holds
|
||||
(type-infer ,Δ4 ∅
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A))))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
|
||||
(check-holds
|
||||
(type-check ,Δ4
|
||||
(((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))
|
||||
((((((elim and (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A)))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
P) Q) ab)
|
||||
((and Q) P)))
|
||||
(check-holds
|
||||
(type-check (Δ-set ,Δ4 true (Unv 0) ((tt : true))) ∅
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) ((and B) A))))
|
||||
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))))
|
||||
(check-holds
|
||||
(type-infer (Δ-set ,Δ4 true (Unv 0) ((tt : true)))
|
||||
((∅ A : Type) B : Type)
|
||||
(conj B)
|
||||
t))
|
||||
(check-holds
|
||||
(type-check (Δ-set ,Δ4 true (Unv 0) ((tt : true))) ∅
|
||||
((((((elim and (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A)))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
true) true)
|
||||
((((conj true) true) tt) tt))
|
||||
((and true) true)))
|
||||
(define gamma (term (∅ temp863 : pre)))
|
||||
(check-holds (wf ,sigma ∅))
|
||||
(check-holds (wf ,sigma ,gamma))
|
||||
(check-holds
|
||||
(type-infer ,sigma ,gamma (Unv 0) t))
|
||||
(check-holds
|
||||
(type-infer ,sigma ,gamma pre t))
|
||||
(check-holds
|
||||
(type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1)))
|
||||
(check-holds
|
||||
(type-infer ,sigma ,gamma pre t))
|
||||
(check-holds
|
||||
(type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1)))
|
||||
(check-holds
|
||||
(type-infer ,sigma (,gamma x : false) false (in-hole Ξ U_D)))
|
||||
(check-holds
|
||||
(type-infer ,sigma (,gamma x : false) x (in-hole Θ false)))
|
||||
(check-holds
|
||||
(type-infer ,sigma (,gamma x : false) (λ (y : false) (Π (x : Type) x))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ false)) U))))
|
||||
(check-true
|
||||
(redex-match? tt-typingL
|
||||
((in-hole Θ_m ((elim x_D U) e_P)) e_D)
|
||||
(term (((elim false (Unv 1)) (λ (y : false) (Π (x : Type) x)))
|
||||
x))))
|
||||
(check-holds
|
||||
(type-check ,sigma (,gamma x : false)
|
||||
(((elim false (Unv 0)) (λ (y : false) (Π (x : Type) x))) x)
|
||||
(Π (x : (Unv 0)) x)))
|
||||
|
||||
;; nat-equal? tests
|
||||
(define zero?
|
||||
(term ((((elim nat Type) (λ (x : nat) bool))
|
||||
true)
|
||||
(λ (x : nat) (λ (x_ih : bool) false)))))
|
||||
(check-holds
|
||||
(type-check ,Δ ∅ ,zero? (Π (x : nat) bool)))
|
||||
(check-equal?
|
||||
(term (reduce ,Δ (,zero? zero)))
|
||||
(term true))
|
||||
(check-equal?
|
||||
(term (reduce ,Δ (,zero? (s zero))))
|
||||
(term false))
|
||||
(define ih-equal?
|
||||
(term ((((elim nat Type) (λ (x : nat) bool))
|
||||
false)
|
||||
(λ (x : nat) (λ (y : bool) (x_ih x))))))
|
||||
(check-holds
|
||||
(type-check ,Δ (∅ x_ih : (Π (x : nat) bool))
|
||||
,ih-equal?
|
||||
(Π (x : nat) bool)))
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ nat (Unv 0)))
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ bool (Unv 0)))
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ (λ (x : nat) (Π (x : nat) bool)) (Π (x : nat) (Unv 0))))
|
||||
(define nat-equal?
|
||||
(term ((((elim nat Type) (λ (x : nat) (Π (x : nat) bool)))
|
||||
,zero?)
|
||||
(λ (x : nat) (λ (x_ih : (Π (x : nat) bool))
|
||||
,ih-equal?)))))
|
||||
(check-holds
|
||||
(type-check ,Δ (∅ nat-equal? : (Π (x-D«4158» : nat) ((λ (x«4159» : nat) (Π (x«4160» : nat) bool)) x-D«4158»)))
|
||||
((nat-equal? zero) zero)
|
||||
bool))
|
||||
(check-holds
|
||||
(type-check ,Δ ∅
|
||||
,nat-equal?
|
||||
(Π (x : nat) (Π (y : nat) bool))))
|
||||
(check-equal?
|
||||
(term (reduce ,Δ ((,nat-equal? zero) (s zero))))
|
||||
(term false))
|
||||
(check-equal?
|
||||
(term (reduce ,Δ ((,nat-equal? (s zero)) zero)))
|
||||
(term false))
|
||||
|
||||
;; == tests
|
||||
(define Δ= (term (Δ-set ,Δ == (Π (A : (Unv 0)) (Π (a : A) (Π (b : A) (Unv 0))))
|
||||
((refl : (Π (A : (Unv 0)) (Π (a : A) (((== A) a) a))))))))
|
||||
(check-true (Δ? Δ=))
|
||||
|
||||
(define refl-elim
|
||||
(term (((((((elim == (Unv 0)) (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((==
|
||||
A1)
|
||||
x1)
|
||||
y1))
|
||||
nat)))))
|
||||
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true))))
|
||||
(check-holds
|
||||
(type-check ,Δ= ∅ ,refl-elim nat))
|
||||
(check-true
|
||||
(redex-match?
|
||||
tt-redL
|
||||
(Δ (in-hole E (in-hole Θ ((elim x_D U) e_P))))
|
||||
(term (,Δ= ,refl-elim))))
|
||||
(check-true
|
||||
(redex-match?
|
||||
tt-redL
|
||||
(in-hole (Θ_p (in-hole Θ_i x_ci)) Θ_m)
|
||||
(term (((((hole
|
||||
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true)))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-ref-parameter-Ξ ,Δ= ==))
|
||||
(term (Π (A : Type) (Π (a : A) (Π (b : A) hole)))))
|
||||
(check-equal?
|
||||
(term (reduce ,Δ= ,refl-elim))
|
||||
(term zero))
|
Loading…
Reference in New Issue
Block a user