Compare commits

...

2 Commits

Author SHA1 Message Date
William J. Bowman
f8a51e65ca Attempting to fix case typing checking
Maybe I shouldn't bother and should fix that after fixing inductives
2015-04-10 22:42:51 -04:00
William J. Bowman
9723870f14 Added capture-avoiding subst, α-equivalence
* Added capture-avoiding substitution
* Added equivalence during typing checking, including α-equivalence and
  limited β-equivalence
* Exposed better typing-check reflection features to allow typing
  checking modulo equivalence
* Tweaked QED macro to use new type-checking reflection feature.
* Fixed some test cases
2015-04-10 22:05:54 -04:00
4 changed files with 211 additions and 144 deletions

View File

@ -36,6 +36,7 @@
(require rackunit)
(define-term Type (Unv 0))
(check-true (x? (term T)))
(check-true (x? (term A)))
(check-true (x? (term truth)))
(check-true (x? (term zero)))
(check-true (x? (term s)))
@ -43,6 +44,8 @@
(check-true (t? (term s)))
(check-true (x? (term nat)))
(check-true (t? (term nat)))
(check-true (t? (term A)))
(check-true (t? (term S)))
(check-true (U? (term (Unv 0))))
(check-true (U? (term Type)))
(check-true (e? (term (λ (x_0 : (Unv 0)) x_0))))
@ -81,12 +84,15 @@
(unv-kind (Unv i_1) (Unv i_2) (Unv i_3))])
;; NB: Substitution is hard
;; NB: Copy and pasted from Redex examples
(define-metafunction cicL
subst-vars : (x any) ... any -> any
[(subst-vars (x_1 any_1) x_1) any_1]
[(subst-vars (x_1 any_1) (any_2 ...)) ((subst-vars (x_1 any_1) any_2) ...)]
[(subst-vars (x_1 any_1) (any_2 ...))
((subst-vars (x_1 any_1) any_2) ...)]
[(subst-vars (x_1 any_1) any_2) any_2]
[(subst-vars (x_1 any_1) (x_2 any_2) ... any_3) (subst-vars (x_1 any_1) (subst-vars (x_2 any_2) ... any_3))]
[(subst-vars (x_1 any_1) (x_2 any_2) ... any_3)
(subst-vars (x_1 any_1) (subst-vars (x_2 any_2) ... any_3))]
[(subst-vars any) any])
(define-metafunction cicL
@ -94,20 +100,21 @@
[(subst U x t) U]
[(subst x x t) t]
[(subst x_0 x t) x_0]
[(subst (Π (x : t_0) t_1) x t) (Π (x : (subst t_0 x t)) t_1)]
[(subst (λ (x : t_0) t_1) x t) (λ (x : (subst t_0 x t)) t_1)]
[(subst (μ (x : t_0) t_1) x t) (μ (x : (subst t_0 x t)) t_1)]
;; TODO: Broken: needs capture avoiding, but currently require
;; binders to be the same in term/type, so this is not a local
;; change.
[(subst (Π (x_0 : t_0) t_1) x t) (Π (x_0 : (subst t_0 x t)) (subst t_1 x t)) ]
[(subst (λ (x_0 : t_0) t_1) x t) (λ (x_0 : (subst t_0 x t)) (subst t_1 x t))]
[(subst (μ (x_0 : t_0) t_1) x t) (μ (x_0 : (subst t_0 x t)) (subst t_1 x t))]
[(subst (any (x : t_0) t_1) x t)
(any (x : (subst t_0 x t)) t_1)]
[(subst (any (x_0 : t_0) t_1) x t)
(any (x_new : (subst (subst-vars (x_0 x_new) t_0) x t))
(subst (subst-vars (x_0 x_new) t_1) x t))
(where x_new
,(variable-not-in
(term (x_0 t_0 x t t_1))
(term x_0)))]
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))]
[(subst (case e (x_0 e_0) ...) x t)
(case (subst e x t)
(x_0 (subst e_0 x t)) ...)])
(module+ test
(check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B))))))
(check-equal?
(term (Π (a : S) (Π (b : B) ((and S) B))))
(term (subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))
@ -142,12 +149,12 @@
;; TODO: Congruence-closure instead of β
(define ==β
(reduction-relation cic-redL
(==> ((Π (x : t_0) t_1) t_2)
(subst t_1 x t_2))
(==> ((λ (x : t) e_0) e_1)
(subst e_0 x e_1))
(==> ((μ (x : t) e_0) e_1)
((subst e_0 x (μ (x : t) e_0)) e_1))
(==> ((λ (x : t_0) t_1) t_2)
(subst t_1 x t_2))
(==> ((Π (x : t_0) t_1) t_2)
(subst t_1 x t_2))
(==> (case e_9
(x_0 e_0) ... (x e) (x_r e_r) ...)
(inductive-apply e e_9)
@ -158,7 +165,8 @@
(define-metafunction cic-redL
reduce : e -> e
[(reduce e) ,(car (apply-reduction-relation* ==β (term e)))])
[(reduce e) t_1
(where t_1 ,(car (apply-reduction-relation* ==β (term e))))])
(module+ test
(check-equal? (term (reduce (Unv 0))) (term (Unv 0)))
(check-equal? (term (reduce ((λ (x : t) x) (Unv 0)))) (term (Unv 0)))
@ -269,8 +277,9 @@
(define-metafunction cicL
branch-type : t t t -> t
[(branch-type t_ind (Π (x_0 : t) e_0) (Π (x_1 : t) e_1))
(branch-type t_ind e_0 e_1)]
[(branch-type t_ind (Π (x_0 : t_0) e_0) (Π (x_1 : t_1) e_1))
(branch-type t_ind e_0 e_1)
#;(side-condition (judgment-holds (equivalent t_0 t_1)))]
;[(branch-type t_ind t_ind t) t])
[(branch-type t_ind t_other t) t])
(module+ test
@ -285,7 +294,8 @@
(define-metafunction cic-typingL
branch-types-match : Σ (x ...) (t ...) t t -> #t or #f
[(branch-types-match Σ (x ...) (t_11 ...) t t_1)
,(andmap (curry equal? (term t)) (term ((branch-type t_1 (lookup Σ x) t_11) ...)))])
,(andmap (lambda (x) (judgment-holds (equivalent ,x t)))
(term ((branch-type t_1 (lookup Σ x) t_11) ...)))])
(module+ test
(check-true
(term (branch-types-match (( truth : (Unv 0)) T : truth) () () (Unv 0) nat)))
@ -323,12 +333,12 @@
[-----------------
(wf )]
[(types Σ Γ t t_0)
[(type-infer Σ Γ t t_0)
(wf Σ Γ)
-----------------
(wf Σ (Γ x : t))]
[(types Σ t t_0)
[(type-infer Σ t t_0)
(wf Σ )
(side-condition (positive t (result-type Σ t)))
-----------------
@ -349,58 +359,106 @@
(check-false (term (terminates? (μ (x : (Unv 0)) (λ (y : (Unv 0)) (x y))))))
(check-true (term (terminates? (μ (x : (Unv 0)) (λ (y : (Unv 0)) y))))))
(define-judgment-form cicL
#:mode (α-equivalent I I)
#:contract (α-equivalent t t)
[----------------- "α-x"
(α-equivalent x x)]
[----------------- "α-U"
(α-equivalent U U)]
[(α-equivalent t_1 (subst t_3 x_1 x_0))
(α-equivalent t_0 t_2)
----------------- "α-binder"
(α-equivalent (any (x_0 : t_0) t_1)
(any (x_1 : t_2) t_3))]
[(α-equivalent e_0 e_2)
(α-equivalent e_1 e_3)
----------------- "α-app"
(α-equivalent (e_0 e_1) (e_2 e_3))]
[(α-equivalent e_0 e_1)
(α-equivalent e_r0 e_r1) ...
----------------- "α-case"
(α-equivalent (case e_0 (x_r0 e_r0) ..._1)
(case e_1 (x_r1 e_r1) ..._1))])
(module+ test
(define-syntax-rule (check-holds (e ...))
(check-true
(judgment-holds (e ...))))
(define-syntax-rule (check-not-holds (e ...))
(check-false
(judgment-holds (e ...))))
(check-holds (α-equivalent x x))
(check-not-holds (α-equivalent x y))
(check-holds (α-equivalent (λ (x : A) x)
(λ (y : A) y))))
(define-judgment-form cicL
#:mode (equivalent I I)
#:contract (equivalent t t)
[(where t_2 (reduce t_0))
(where t_3 (reduce t_1))
(α-equivalent t_2 t_3)
----------------- "≡-αβ"
(equivalent t_0 t_1)])
(define-judgment-form cic-typingL
#:mode (types I I I O)
#:contract (types Σ Γ e t)
#:mode (type-infer I I I O)
#:contract (type-infer Σ Γ e t)
[(unv-ok U_0 U_1)
(wf Σ Γ)
----------------- "DTR-Axiom"
(types Σ Γ U_0 U_1)]
(type-infer Σ Γ U_0 U_1)]
[(where t (lookup Σ x))
----------------- "DTR-Inductive"
(types Σ Γ x t)]
(type-infer Σ Γ x t)]
;; TODO: Require alpha-equiv here, at least.
[(where t (lookup Γ x))
----------------- "DTR-Start"
(types Σ Γ x t)]
(type-infer Σ Γ x t)]
[(types Σ Γ t_0 U_1)
(types Σ (Γ x : t_0) t U_2)
[(type-infer Σ Γ t_0 U_1)
(type-infer Σ (Γ x : t_0) t U_2)
(unv-kind U_1 U_2 U)
----------------- "DTR-Product"
(types Σ Γ (Π (x : t_0) t) U)]
(type-infer Σ Γ (Π (x : t_0) t) U)]
[(types Σ Γ e_0 (Π (x_0 : t_0) t_1))
(types Σ Γ e_1 t_0)
[(type-infer Σ Γ e_0 (Π (x_0 : t_0) t_1))
(type-infer Σ Γ e_1 t_2)
(equivalent t_0 t_2)
----------------- "DTR-Application"
(types Σ Γ (e_0 e_1) (subst t_1 x_0 e_1))]
(type-infer Σ Γ (e_0 e_1) (subst t_1 x_0 e_1))]
;; TODO: This restriction that the names be the same is a little annoying
[(types Σ (Γ x : t_0) e t_1)
(types Σ Γ (Π (x : t_0) t_1) U)
[(type-infer Σ (Γ x : t_0) e t_1)
(type-infer Σ Γ (Π (x : t_0) t_1) U)
----------------- "DTR-Abstraction"
(types Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
(type-infer Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
[(side-condition (terminates? (μ (x : t_0) e)))
(types Σ (Γ x : t_0) e t_0)
(types Σ Γ t_0 U)
(type-infer Σ (Γ x : t_0) e t_0)
(type-infer Σ Γ t_0 U)
----------------- "DTR-Fix"
(types Σ Γ (μ (x : t_0) e) t_0)]
(type-infer Σ Γ (μ (x : t_0) e) t_0)]
[(types Σ Γ e t_9)
[(type-infer Σ Γ e t_9)
(where t_1 (inductive-name t_9))
(side-condition (constructors-for Σ t_1 (x_0 x_1 ...)))
(types Σ Γ e_0 t_00)
(types Σ Γ e_1 t_11) ...
(type-infer Σ Γ e_0 t_00)
(type-infer Σ Γ e_1 t_11) ...
;; TODO Some of these meta-functions aren't very consistent in terms
;; of interface
(where t (branch-type t_1 (lookup Σ x_0) t_00))
(side-condition (branch-types-match Σ (x_1 ...) (t_11 ...) t t_1))
----------------- "DTR-Case"
(types Σ Γ (case e (x_0 e_0) (x_1 e_1) ...) t)]
(type-infer Σ Γ (case e (x_0 e_0) (x_1 e_1) ...) t)]
;; TODO: This shouldn't be a special case, but I failed to forall
;; quantify properly over the branches in the above case, and I'm lazy.
@ -423,60 +481,59 @@
(types Σ Γ t_1 U)
----------------- "DTR-Conversion"
(types Σ Γ e t_1)])
(define-judgment-form cic-typingL
#:mode (type-check I I I I)
#:contract (type-check Σ Γ e t)
[(type-infer Σ Γ e t_0)
(equivalent t t_0)
----------------- "DTR-Check"
(type-check Σ Γ e t)])
(module+ test
(check-true (judgment-holds (types (Unv 0) (Unv 1))))
(check-true (judgment-holds (types ( x : (Unv 0)) (Unv 0) (Unv 1))))
(check-true (judgment-holds (types ( x : (Unv 0)) x (Unv 0))))
(check-true (judgment-holds (types (( x_0 : (Unv 0)) x_1 : (Unv 0))
(Π (x_3 : x_0) x_1) (Unv 0))))
(check-holds (type-infer (Unv 0) (Unv 1)))
(check-holds (type-infer ( x : (Unv 0)) (Unv 0) (Unv 1)))
(check-holds (type-infer ( x : (Unv 0)) x (Unv 0)))
(check-holds (type-infer (( x_0 : (Unv 0)) x_1 : (Unv 0))
(Π (x_3 : x_0) x_1) (Unv 0)))
(check-holds (type-infer ( x_0 : (Unv 0)) x_0 U_1))
(check-holds (type-infer (( x_0 : (Unv 0)) x_2 : x_0) (Unv 0) U_2))
(check-holds (unv-kind (Unv 0) (Unv 0) (Unv 0)))
(check-holds (type-infer ( x_0 : (Unv 0)) (Π (x_2 : x_0) (Unv 0)) t))
(check-true (judgment-holds (types ( x_0 : (Unv 0)) x_0 U_1)))
(check-true (judgment-holds (types (( x_0 : (Unv 0)) x_2 : x_0) (Unv 0) U_2)))
(check-true (judgment-holds (unv-kind (Unv 0) (Unv 0) (Unv 0))))
(check-true (judgment-holds (types ( x_0 : (Unv 0)) (Π (x_2 : x_0) (Unv 0)) t)))
(check-true (judgment-holds (types (λ (x : (Unv 0)) x) (Π (x : (Unv 0)) (Unv 0)))))
(check-true (judgment-holds (types (λ (y : (Unv 0)) (λ (x : y) x))
(Π (y : (Unv 0)) (Π (x : y) y)))))
(check-holds (type-infer (λ (x : (Unv 0)) x) (Π (x : (Unv 0)) (Unv 0))))
(check-holds (type-infer (λ (y : (Unv 0)) (λ (x : y) x))
(Π (y : (Unv 0)) (Π (x : y) y))))
(check-equal? (list (term (Unv 1)))
(judgment-holds
(types (( x1 : (Unv 0)) x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0)))
(type-infer (( x1 : (Unv 0)) x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0)))
U)
U))
(check-true
(judgment-holds
(types (Π (x2 : (Unv 0)) (Unv 0))
U)))
(check-true
(judgment-holds
(types ( x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))))
t)))
(check-true
(judgment-holds (types (( truth : (Unv 0)) T : truth)
T
truth)))
(check-true
(judgment-holds (types (( truth : (Unv 0)) T : truth)
(check-holds
(type-infer (Π (x2 : (Unv 0)) (Unv 0)) U))
(check-holds
(type-infer ( x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))))
t))
(check-holds (type-infer (( truth : (Unv 0)) T : truth)
T truth))
(check-holds (type-infer (( truth : (Unv 0)) T : truth)
(Unv 0)
(Unv 1))))
(check-true
(judgment-holds (types (( truth : (Unv 0)) T : truth)
(Unv 1)))
(check-holds (type-infer (( truth : (Unv 0)) T : truth)
(case T (T (Unv 0)))
(Unv 1))))
(Unv 1)))
(check-false
(judgment-holds (types (( truth : (Unv 0)) T : truth)
(case T (T (Unv 0)) (T (Unv 0)))
(Unv 1))))
(check-not-holds
(type-infer (( truth : (Unv 0)) T : truth)
(case T (T (Unv 0)) (T (Unv 0)))
(Unv 1)))
(define-syntax-rule (nat-test syn ...)
(check-true (judgment-holds
(types ((( nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
syn ...))))
(check-holds (type-infer ((( nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
syn ...)))
(nat-test (Π (x : nat) nat) (Unv 0))
(nat-test (λ (x : nat) x) (Π (x : nat) nat))
(nat-test (case zero (zero zero) (s (λ (x : nat) x)))
@ -489,75 +546,75 @@
nat)
(nat-test (case zero (zero (s zero)) (s (λ (x : nat) (s (s x)))))
nat)
(check-false (judgment-holds
(types ((( nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
(case zero (zero (s zero)))
nat)))
(check-not-holds (type-infer ((( nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
(case zero (zero (s zero)))
nat))
(define lam (term (λ (nat : (Unv 0)) nat)))
(check-equal?
(list (term (Π (nat : (Unv 0)) (Unv 0))))
(judgment-holds (types ,Σ0 ,lam t) t))
(judgment-holds (type-infer ,Σ0 ,lam t) t))
(check-equal?
(list (term (Π (nat : (Unv 0)) (Unv 0))))
(judgment-holds (types ,Σ2 ,lam t) t))
(judgment-holds (type-infer ,Σ2 ,lam t) t))
(check-equal?
(list (term (Π (x : (Π (y : (Unv 0)) y)) nat)))
(judgment-holds (types ( nat : (Unv 0)) (λ (x : (Π (y : (Unv 0)) y)) (x nat))
(judgment-holds (type-infer ( nat : (Unv 0)) (λ (x : (Π (y : (Unv 0)) y)) (x nat))
t) t))
(check-equal?
(list (term (Π (y : (Unv 0)) (Unv 0))))
(judgment-holds (types ( nat : (Unv 0)) (λ (y : (Unv 0)) y) t) t))
(judgment-holds (type-infer ( nat : (Unv 0)) (λ (y : (Unv 0)) y) t) t))
(check-equal?
(list (term (Unv 0)))
(judgment-holds (types ( nat : (Unv 0))
(judgment-holds (type-infer ( nat : (Unv 0))
((λ (x : (Π (y : (Unv 0)) (Unv 0))) (x nat))
(λ (y : (Unv 0)) y))
t) t))
(check-equal?
(list (term (Unv 0)) (term (Unv 1)))
(judgment-holds
(types ,Σ4 (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))
(type-infer ,Σ4 (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))
U) U))
(check-true
(judgment-holds (types ,Σ4 ( S : (Unv 0)) conj (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B))))))))
(check-true
(judgment-holds (types ,Σ4 ( S : (Unv 0)) S (Unv 0))))
(check-true
(judgment-holds (types ,Σ4 ( S : (Unv 0)) (conj S)
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))))
(check-true
(judgment-holds (types ,Σ4 ( S : (Unv 0)) (conj S)
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))))
(check-true
(judgment-holds (types ,Σ4 (λ (S : (Unv 0)) (conj S))
(Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))))
(check-true
(judgment-holds (types ((,Σ4 true : (Unv 0)) tt : true)
(check-holds
(type-infer ,Σ4 ( S : (Unv 0)) conj (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))
(check-holds (type-infer ,Σ4 ( S : (Unv 0)) S (Unv 0)))
(check-holds (type-check ,Σ4 ( S : (Unv 0)) (conj S)
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
(check-holds (type-check ,Σ4 ( S : (Unv 0)) (conj S)
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
(check-holds (type-check ,Σ4 (λ (S : (Unv 0)) (conj S))
(Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))))
(check-holds (type-check ((,Σ4 true : (Unv 0)) tt : true)
((((conj true) true) tt) tt)
((and true) true))))
(check-true
(judgment-holds (types ((,Σ4 true : (Unv 0)) tt : true)
((and true) true)))
(check-holds (type-infer ((,Σ4 true : (Unv 0)) tt : true)
(case ((((conj true) true) tt) tt)
(conj (λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) a))))))
A)))
(conj (λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) a))))))
A))
(define sigma (term ((((((( true : (Unv 0)) T : true) false : (Unv 0)) equal : (Π (A : (Unv 0))
(Π (B : (Unv 0)) (Unv 0))))
nat : (Unv 0)) heap : (Unv 0)) pre : (Π (temp808 : heap) (Unv 0)))))
(define gamma (term ( temp863 : pre)))
(check-true (judgment-holds (wf ,sigma )))
(check-true (judgment-holds (wf ,sigma ,gamma)))
(check-holds (wf ,sigma ))
(check-holds (wf ,sigma ,gamma))
(check-holds
(type-infer ,sigma ,gamma (Unv 0) t))
(check-holds
(type-infer ,sigma ,gamma pre t))
(check-holds
(type-infer ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1)))
(check-holds
(type-infer ,sigma (,gamma x : false) (case x) t))
(check-true
(judgment-holds (types ,sigma ,gamma (Unv 0) t)))
(check-true
(judgment-holds (types ,sigma ,gamma pre t)))
(check-true
(judgment-holds (types ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1))))
(check-true
(judgment-holds (types ,sigma (,gamma x : false) (case x) t)))))
(judgment-holds
(type-infer ,Σ4
(λ (A3 : (Unv 0)) (λ (B3 : (Unv 0)) (λ (c1 : ((and A3) B3))
(case c1
(conj (λ (A1 : (Unv 0)) (λ (B1 : (Unv 0)) (λ (a1 : A1) (λ (b1 : B1) a1)))))))))
t) t))))
;; This module just provide module language sugar over the redex model.
@ -681,13 +738,18 @@
;; TODO: Still absurdly slow. Probably doing n^2 checks of sigma and
;; gamma. And lookup on sigma, gamma are linear, so probably n^2 lookup time.
(define (type-infer/term t)
(let ([t (judgment-holds (types ,(sigma) ,(gamma) ,t t_0) t_0)])
(let ([t (judgment-holds (type-infer ,(sigma) ,(gamma) ,t t_0) t_0)])
(and (pair? t) (car t))))
(define (type-check/term? e t)
(and (judgment-holds (type-check ,(sigma) ,(gamma) ,e ,t)) #t))
(define (syntax->curnel-syntax syn) (denote syn (cur->datum syn)))
(define (denote syn t)
#`(term (reduce (subst-all #,(datum->syntax syn t) #,(first (bind-subst)) #,(second (bind-subst))))))
(quasisyntax/loc
syn
(term (reduce (subst-all #,(datum->syntax syn t) #,(first (bind-subst)) #,(second (bind-subst)))))))
;; TODO: Blanket disarming is probably a bad idea.
(define orig-insp (variable-reference->module-declaration-inspector
@ -746,19 +808,20 @@
reified-term)
;; Reflection tools
(define (normalize/syn syn)
(denote syn (term (reduce (subst-all ,(cur->datum syn) ,(first (bind-subst)) ,(second (bind-subst)))))))
(define (run-cur->datum syn)
(cur->datum (normalize/syn syn)))
;; TODO: OOps, type-infer doesn't return a cur term but a redex term
;; wrapped in syntax bla. This is bad.
(define (type-infer/syn syn)
(let ([t (type-infer/term (cur->datum syn))])
(let ([t (type-infer/term (run-cur->datum syn))])
(and t (datum->syntax syn t))))
(define (type-check/syn? syn type)
(let ([t (type-infer/term (cur->datum syn))])
(equal? t (cur->datum type))))
(define (normalize/syn syn)
(denote syn (term (reduce (subst-all ,(cur->datum syn) ,(first (bind-subst)) ,(second (bind-subst)))))))
(type-check/term? (run-cur->datum syn) (run-cur->datum type)))
;; Takes a Cur term syn and an arbitrary number of identifiers ls. The cur term is
;; expanded until expansion reaches a Curnel form, or one of the

View File

@ -42,6 +42,6 @@
[z btrue]
[(s (n4 : nat)) (nat-equal? n3 n4)])]))
(module+ test
(check-equal? btrue (nat-equal? z z))
(check-equal? bfalse (nat-equal? z (s z)))
(check-equal? btrue (nat-equal? (s z) (s z))))
(check-equal? (nat-equal? z z) btrue)
(check-equal? (nat-equal? z (s z)) bfalse)
(check-equal? (nat-equal? (s z) (s z)) btrue))

View File

@ -18,7 +18,7 @@
(define-theorem thm:anything-implies-true (forall (P : Type) true))
(qed (run thm:anything-implies-true) (lambda (P : Type) T))
(qed thm:anything-implies-true (lambda (P : Type) T))
(data false : Type)

View File

@ -80,8 +80,12 @@
(define-syntax-rule (define-theorem name prop)
(define name prop))
;; TODO: Current implementation doesn't do beta/eta while type-checking
;; because reasons. So manually insert a run in the type annotation
(define-syntax-rule (qed thm pf)
((lambda (x : (run thm)) Type) pf))
(define-syntax (qed stx)
(syntax-case stx ()
[(_ t pf)
(begin
(unless (type-check/syn? #'pf #'t)
(raise-syntax-error 'qed "Invalid proof"
#'pf #'t))
#'pf)]))