Compare commits

...

2 Commits

Author SHA1 Message Date
William J. Bowman
63357484d9
Some examples from Coq, and equivalents in Cur
* Examples of Coq code, and what one wishes one could do.
* Examples of similar model in Cur, and what is currently required.
2016-01-22 14:20:16 -05:00
William J. Bowman
5fe50b4758
Better typeclasses 2016-01-22 14:19:49 -05:00
3 changed files with 96 additions and 4 deletions

View File

@ -14,10 +14,10 @@
| These typeclasses are kind of broken. There are no typeclass constraints so....
|#
(begin-for-syntax
#| NB:
| Need this thing to be global w.r.t. the runtime, i.e., exist once
| and for all no matter how many things import typeclass, i.e., not
| local to this module.
#| TODO:
| A compile-time hash table is stupid. Use something akin to struct
| type properties to associate method with the identifier for the type,
| perhaps syntax properties.
|#
(define typeclasses (make-hash)))
(define-syntax (typeclass syn)

35
examples/try.rkt Normal file
View File

@ -0,0 +1,35 @@
#lang cur
(require
cur/stdlib/sugar
cur/stdlib/nat
cur/stdlib/prop)
;; TODO: Axioms
;; TODO: implicits
;; No way to define axioms in Cur, yet, although it is a simple change.
;; No implicits in Cur, yet
(define (plus_0_n (f_equal : (-> (A : Type) (a1 : A) (a2 : A) (B : Type) (f : (-> A B))
(== A a1 a2)
(== B (f a1) (f a2)))) (n : Nat))
(match n
;; TODO: This should work
#:return (== Nat n (plus z n))
[z (refl Nat z)]
[(s (n : Nat))
(f_equal Nat n (plus z n) Nat s (recur n))]))
(:: plus_n_0
(forall
(f_equal : (-> (A : Type) (a1 : A) (a2 : A) (B : Type) (f : (-> A B))
(== A a1 a2) (== B (f a1) (f a2))))
(n : Nat)
(== Nat n (plus z n))))
#;(define (plus_n_Sm (n : Nat) (m : Nat))
(elim Nat Type
(lambda (n : Nat) (== Nat (plus n m) (plus m n)))
(plus_n_0 m)
(lambda (y : Nat) (ih : ))
(elim == Type)))
#;(:: plus_n_Sm (forall (n : Nat) (m : Nat) (== (s (plus n m)) (plus n (s m)))))

57
examples/try.v Normal file
View File

@ -0,0 +1,57 @@
Definition plus_n_O : forall n : nat, n = n + 0 :=
fun n : nat =>
nat_ind (fun n0 : nat => n0 = n0 + 0) eq_refl
(fun (n0 : nat) (IHn : n0 = n0 + 0) => f_equal S IHn) n.
Definition plus_n_Sm : forall n m : nat, S (n + m) = n + S m :=
fun n m : nat =>
nat_ind (fun n0 : nat => S (n0 + m) = n0 + S m) eq_refl
(fun (n0 : nat) (IHn : S (n0 + m) = n0 + S m) => f_equal S IHn) n.
Definition plus_comm : forall n m : nat, n + m = m + n :=
fun n m : nat =>
nat_ind (fun n0 : nat => n0 + m = m + n0) (plus_n_O m)
(fun (y : nat) (H : y + m = m + y) =>
eq_ind (S (m + y)) (fun n0 : nat => S (y + m) = n0)
(f_equal S H) (m + S y) (plus_n_Sm m y)) n.
Fixpoint ft (l: nat): Type :=
match l with
| O => unit
| S n => (bool * ft n) % type
end.
Fixpoint concat {n1 n2} : ft n1 -> ft n2 -> ft (n1 + n2) :=
match n1 as n1_PAT return ft n1_PAT -> ft n2 -> ft (n1_PAT + n2) with
| O => fun _ l2 => l2
| S n => fun l1 =>
match l1 with
| (b, l1') => fun l2 => (b, concat l1' l2)
end
end.
(* Question 1: Ideally, I could have the following syntactic sugar, can you do that?
Fixpoint concat {n1 n2} (l1: ft n1) (l2: ft n2) : ft (n1 + n2) :=
match n1 with
| O => l2
| S n =>
match l1 with
| (b, l1') => (b, concat l1' l2)
end
end.
*)
Definition concat' {n1 n2} (l1: ft n1) (l2: ft n2): ft (n1 + n2) :=
eq_rect_r ft (concat l2 l1) (plus_comm _ _).
Goal (@concat' 1 1 (true, tt) (false, tt)) = (false, (true, tt)).
Proof.
unfold concat'.
simpl (@concat 1 1 (false, tt) (true, tt)).
cbv delta [plus_comm plus_n_Sm plus_n_O nat_ind eq_ind].
simpl.
(* Question 2: In this step, Coq does a large number of computation to compute a proof term to eq_refl. This is super inefficient for any function application of eq_rect_r. Is there a possible way to customize the method of reducing a term in your system? For example, when you see a eq_rect_r, directly computes two types (which should be equivalent) and check if they are convertible. If yes, tag new type on the term directly. *)
reflexivity.
Qed.