Store named key params in key objects (#1141)

- Store private and public params separately and by name in objects,
  instead of as an array

- Do not keep params in MPI form, but convert them to Uint8Arrays when
  generating/parsing the key

- Modify low-level crypto functions to always accept and return
  Uint8Arrays instead of BigIntegers

- Move PKCS1 padding to lower level functions
This commit is contained in:
larabr 2020-09-04 14:23:17 +02:00 committed by Daniel Huigens
parent 8854b097b4
commit 3a75eadaa0
24 changed files with 634 additions and 776 deletions

View File

@ -36,13 +36,12 @@ import publicKey from './public_key';
import cipher from './cipher';
import random from './random';
import type_ecdh_symkey from '../type/ecdh_symkey';
import type_kdf_params from '../type/kdf_params';
import KDFParams from '../type/kdf_params';
import type_mpi from '../type/mpi';
import type_oid from '../type/oid';
import enums from '../enums';
import util from '../util';
import pkcs1 from './pkcs1';
import pkcs5 from './pkcs5';
import OID from '../type/oid';
import Curve from './public_key/elliptic/curves';
function constructParams(types, data) {
return types.map(function(type, i) {
@ -57,40 +56,30 @@ export default {
/**
* Encrypts data using specified algorithm and public key parameters.
* See {@link https://tools.ietf.org/html/rfc4880#section-9.1|RFC 4880 9.1} for public key algorithms.
* @param {module:enums.publicKey} algo Public key algorithm
* @param {Array<module:type/mpi|
module:type/oid|
module:type/kdf_params>} pub_params Algorithm-specific public key parameters
* @param {Uint8Array} data Data to be encrypted
* @param {Uint8Array} fingerprint Recipient fingerprint
* @param {module:enums.publicKey} algo Public key algorithm
* @param {Object} pubParams Algorithm-specific public key parameters
* @param {Uint8Array} data Data to be encrypted
* @param {Uint8Array} fingerprint Recipient fingerprint
* @returns {Array<module:type/mpi|
* module:type/ecdh_symkey>} encrypted session key parameters
* @async
*/
publicKeyEncrypt: async function(algo, pub_params, data, fingerprint) {
publicKeyEncrypt: async function(algo, publicParams, data, fingerprint) {
const types = this.getEncSessionKeyParamTypes(algo);
switch (algo) {
case enums.publicKey.rsaEncrypt:
case enums.publicKey.rsaEncryptSign: {
const n = pub_params[0].toUint8Array();
const e = pub_params[1].toUint8Array();
const { n, e } = publicParams;
const res = await publicKey.rsa.encrypt(data, n, e);
return constructParams(types, [res]);
}
case enums.publicKey.elgamal: {
data = new type_mpi(await pkcs1.eme.encode(data, pub_params[0].byteLength()));
const m = await data.toBigInteger();
const p = await pub_params[0].toBigInteger();
const g = await pub_params[1].toBigInteger();
const y = await pub_params[2].toBigInteger();
const res = await publicKey.elgamal.encrypt(m, p, g, y);
const { p, g, y } = publicParams;
const res = await publicKey.elgamal.encrypt(data, p, g, y);
return constructParams(types, [res.c1, res.c2]);
}
case enums.publicKey.ecdh: {
data = new type_mpi(pkcs5.encode(data));
const oid = pub_params[0];
const Q = pub_params[1].toUint8Array();
const kdfParams = pub_params[2];
const { oid, Q, kdfParams } = publicParams;
const { publicKey: V, wrappedKey: C } = await publicKey.elliptic.ecdh.encrypt(
oid, kdfParams, data, Q, fingerprint);
return constructParams(types, [V, C]);
@ -104,125 +93,133 @@ export default {
* Decrypts data using specified algorithm and private key parameters.
* See {@link https://tools.ietf.org/html/rfc4880#section-5.5.3|RFC 4880 5.5.3}
* @param {module:enums.publicKey} algo Public key algorithm
* @param {Array<module:type/mpi|
module:type/oid|
module:type/kdf_params>} key_params Algorithm-specific public, private key parameters
* @param {Object} publicKeyParams Algorithm-specific public key parameters
* @param {Object} privateKeyParams Algorithm-specific private key parameters
* @param {Array<module:type/mpi|
module:type/ecdh_symkey>}
data_params encrypted session key parameters
* @param {String} fingerprint Recipient fingerprint
* @returns {String} String containing the decrypted data
* @param {Uint8Array} fingerprint Recipient fingerprint
* @returns {Uint8Array} decrypted data
* @async
*/
publicKeyDecrypt: async function(algo, key_params, data_params, fingerprint) {
publicKeyDecrypt: async function(algo, publicKeyParams, privateKeyParams, data_params, fingerprint) {
switch (algo) {
case enums.publicKey.rsaEncryptSign:
case enums.publicKey.rsaEncrypt: {
const c = data_params[0].toUint8Array();
const n = key_params[0].toUint8Array(); // n = pq
const e = key_params[1].toUint8Array();
const d = key_params[2].toUint8Array(); // de = 1 mod (p-1)(q-1)
const p = key_params[3].toUint8Array();
const q = key_params[4].toUint8Array();
const u = key_params[5].toUint8Array(); // p^-1 mod q
const { n, e } = publicKeyParams;
const { d, p, q, u } = privateKeyParams;
return publicKey.rsa.decrypt(c, n, e, d, p, q, u);
}
case enums.publicKey.elgamal: {
const c1 = await data_params[0].toBigInteger();
const c2 = await data_params[1].toBigInteger();
const p = await key_params[0].toBigInteger();
const x = await key_params[3].toBigInteger();
const result = new type_mpi(await publicKey.elgamal.decrypt(c1, c2, p, x));
return pkcs1.eme.decode(result.toUint8Array('be', p.byteLength()));
const c1 = data_params[0].toUint8Array();
const c2 = data_params[1].toUint8Array();
const p = publicKeyParams.p;
const x = privateKeyParams.x;
return publicKey.elgamal.decrypt(c1, c2, p, x);
}
case enums.publicKey.ecdh: {
const oid = key_params[0];
const kdfParams = key_params[2];
const { oid, Q, kdfParams } = publicKeyParams;
const { d } = privateKeyParams;
const V = data_params[0].toUint8Array();
const C = data_params[1].data;
const Q = key_params[1].toUint8Array();
const d = key_params[3].toUint8Array();
const result = new type_mpi(await publicKey.elliptic.ecdh.decrypt(
oid, kdfParams, V, C, Q, d, fingerprint));
return pkcs5.decode(result.toUint8Array());
return publicKey.elliptic.ecdh.decrypt(
oid, kdfParams, V, C, Q, d, fingerprint);
}
default:
throw new Error('Invalid public key encryption algorithm.');
}
},
/** Returns the types comprising the private key of an algorithm
* @param {module:enums.publicKey} algo The public key algorithm
* @returns {Array<Object>} The array of types
/**
* Parse public key material in binary form to get the key parameters
* @param {module:enums.publicKey} algo The key algorithm
* @param {Uint8Array} bytes The key material to parse
* @returns {Object} key parameters referenced by name
* @returns { read: Number, publicParams: Object } number of read bytes plus key parameters referenced by name
*/
getPrivKeyParamTypes: function(algo) {
parsePublicKeyParams: function(algo, bytes) {
let read = 0;
switch (algo) {
// Algorithm-Specific Fields for RSA secret keys:
// - multiprecision integer (MPI) of RSA secret exponent d.
// - MPI of RSA secret prime value p.
// - MPI of RSA secret prime value q (p < q).
// - MPI of u, the multiplicative inverse of p, mod q.
case enums.publicKey.rsaEncrypt:
case enums.publicKey.rsaEncryptSign:
case enums.publicKey.rsaSign:
return [type_mpi, type_mpi, type_mpi, type_mpi];
// Algorithm-Specific Fields for Elgamal secret keys:
// - MPI of Elgamal secret exponent x.
case enums.publicKey.elgamal:
return [type_mpi];
// Algorithm-Specific Fields for DSA secret keys:
// - MPI of DSA secret exponent x.
case enums.publicKey.dsa:
return [type_mpi];
// Algorithm-Specific Fields for ECDSA or ECDH secret keys:
// - MPI of an integer representing the secret key.
case enums.publicKey.ecdh:
case enums.publicKey.ecdsa:
case enums.publicKey.eddsa:
return [type_mpi];
case enums.publicKey.rsaSign: {
let read = 0;
const n = util.readMPI(bytes.subarray(read)); read += n.length + 2;
const e = util.readMPI(bytes.subarray(read)); read += e.length + 2;
return { read, publicParams: { n, e } };
}
case enums.publicKey.dsa: {
const p = util.readMPI(bytes.subarray(read)); read += p.length + 2;
const q = util.readMPI(bytes.subarray(read)); read += q.length + 2;
const g = util.readMPI(bytes.subarray(read)); read += g.length + 2;
const y = util.readMPI(bytes.subarray(read)); read += y.length + 2;
return { read, publicParams: { p, q, g, y } };
}
case enums.publicKey.elgamal: {
const p = util.readMPI(bytes.subarray(read)); read += p.length + 2;
const g = util.readMPI(bytes.subarray(read)); read += g.length + 2;
const y = util.readMPI(bytes.subarray(read)); read += y.length + 2;
return { read, publicParams: { p, g, y } };
}
case enums.publicKey.ecdsa: {
const oid = new OID(); read += oid.read(bytes);
const Q = util.readMPI(bytes.subarray(read)); read += Q.length + 2;
return { read: read, publicParams: { oid, Q } };
}
case enums.publicKey.eddsa: {
const oid = new OID(); read += oid.read(bytes);
let Q = util.readMPI(bytes.subarray(read)); read += Q.length + 2;
Q = util.padToLength(Q, 33);
return { read: read, publicParams: { oid, Q } };
}
case enums.publicKey.ecdh: {
const oid = new OID(); read += oid.read(bytes);
const Q = util.readMPI(bytes.subarray(read)); read += Q.length + 2;
const kdfParams = new KDFParams(); read += kdfParams.read(bytes.subarray(read));
return { read: read, publicParams: { oid, Q, kdfParams } };
}
default:
throw new Error('Invalid public key encryption algorithm.');
}
},
/** Returns the types comprising the public key of an algorithm
* @param {module:enums.publicKey} algo The public key algorithm
* @returns {Array<Object>} The array of types
/**
* Parse private key material in binary form to get the key parameters
* @param {module:enums.publicKey} algo The key algorithm
* @param {Uint8Array} bytes The key material to parse
* @param {Object} publicParams (ECC only) public params, needed to format some private params
* @returns { read: Number, privateParams: Object } number of read bytes plus the key parameters referenced by name
*/
getPubKeyParamTypes: function(algo) {
parsePrivateKeyParams: function(algo, bytes, publicParams) {
let read = 0;
switch (algo) {
// Algorithm-Specific Fields for RSA public keys:
// - a multiprecision integer (MPI) of RSA public modulus n;
// - an MPI of RSA public encryption exponent e.
case enums.publicKey.rsaEncrypt:
case enums.publicKey.rsaEncryptSign:
case enums.publicKey.rsaSign:
return [type_mpi, type_mpi];
// Algorithm-Specific Fields for Elgamal public keys:
// - MPI of Elgamal prime p;
// - MPI of Elgamal group generator g;
// - MPI of Elgamal public key value y (= g**x mod p where x is secret).
case enums.publicKey.elgamal:
return [type_mpi, type_mpi, type_mpi];
// Algorithm-Specific Fields for DSA public keys:
// - MPI of DSA prime p;
// - MPI of DSA group order q (q is a prime divisor of p-1);
// - MPI of DSA group generator g;
// - MPI of DSA public-key value y (= g**x mod p where x is secret).
case enums.publicKey.rsaSign: {
const d = util.readMPI(bytes.subarray(read)); read += d.length + 2;
const p = util.readMPI(bytes.subarray(read)); read += p.length + 2;
const q = util.readMPI(bytes.subarray(read)); read += q.length + 2;
const u = util.readMPI(bytes.subarray(read)); read += u.length + 2;
return { read, privateParams: { d, p, q, u } };
}
case enums.publicKey.dsa:
return [type_mpi, type_mpi, type_mpi, type_mpi];
// Algorithm-Specific Fields for ECDSA/EdDSA public keys:
// - OID of curve;
// - MPI of EC point representing public key.
case enums.publicKey.elgamal: {
const x = util.readMPI(bytes.subarray(read)); read += x.length + 2;
return { read, privateParams: { x } };
}
case enums.publicKey.ecdsa:
case enums.publicKey.eddsa:
return [type_oid, type_mpi];
// Algorithm-Specific Fields for ECDH public keys:
// - OID of curve;
// - MPI of EC point representing public key.
// - KDF: variable-length field containing KDF parameters.
case enums.publicKey.ecdh:
return [type_oid, type_mpi, type_kdf_params];
case enums.publicKey.ecdh: {
const curve = new Curve(publicParams.oid);
let d = util.readMPI(bytes.subarray(read)); read += d.length + 2;
d = util.padToLength(d, curve.payloadSize);
return { read, privateParams: { d } };
}
case enums.publicKey.eddsa: {
let seed = util.readMPI(bytes.subarray(read)); read += seed.length + 2;
seed = util.padToLength(seed, 32);
return { read, privateParams: { seed } };
}
default:
throw new Error('Invalid public key encryption algorithm.');
}
@ -255,42 +252,60 @@ export default {
}
},
/** Generate algorithm-specific key parameters
/**
* Convert params to MPI and serializes them in the proper order
* @param {module:enums.publicKey} algo The public key algorithm
* @param {Object} params The key parameters indexed by name
* @returns {Uint8Array} The array containing the MPIs
*/
serializeKeyParams: function(algo, params) {
const orderedParams = Object.keys(params).map(name => {
const param = params[name];
return util.isUint8Array(param) ? util.uint8ArrayToMpi(param) : param.write();
});
return util.concatUint8Array(orderedParams);
},
/**
* Generate algorithm-specific key parameters
* @param {module:enums.publicKey} algo The public key algorithm
* @param {Integer} bits Bit length for RSA keys
* @param {module:type/oid} oid Object identifier for ECC keys
* @returns {Array} The array of parameters
* @returns { publicParams, privateParams: {Object} } The parameters referenced by name
* @async
*/
generateParams: function(algo, bits, oid) {
const types = [].concat(this.getPubKeyParamTypes(algo), this.getPrivKeyParamTypes(algo));
switch (algo) {
case enums.publicKey.rsaEncrypt:
case enums.publicKey.rsaEncryptSign:
case enums.publicKey.rsaSign: {
return publicKey.rsa.generate(bits, 65537).then(function(keyObject) {
return constructParams(
types, [keyObject.n, keyObject.e, keyObject.d, keyObject.p, keyObject.q, keyObject.u]
);
});
return publicKey.rsa.generate(bits, 65537).then(({ n, e, d, p, q, u }) => ({
privateParams: { d, p, q, u },
publicParams: { n, e }
}));
}
case enums.publicKey.ecdsa:
return publicKey.elliptic.generate(oid).then(({ oid, Q, secret }) => ({
privateParams: { d: secret },
publicParams: { oid: new OID(oid), Q }
}));
case enums.publicKey.eddsa:
return publicKey.elliptic.generate(oid).then(({ oid, Q, secret }) => ({
privateParams: { seed: secret },
publicParams: { oid: new OID(oid), Q }
}));
case enums.publicKey.ecdh:
return publicKey.elliptic.generate(oid).then(({ oid, Q, secret, hash, cipher }) => ({
privateParams: { d: secret },
publicParams: {
oid: new OID(oid),
Q,
kdfParams: new KDFParams({ hash, cipher })
}
}));
case enums.publicKey.dsa:
case enums.publicKey.elgamal:
throw new Error('Unsupported algorithm for key generation.');
case enums.publicKey.ecdsa:
case enums.publicKey.eddsa:
return publicKey.elliptic.generate(oid).then(function (keyObject) {
return constructParams(types, [keyObject.oid, keyObject.Q, keyObject.d]);
});
case enums.publicKey.ecdh:
return publicKey.elliptic.generate(oid).then(function (keyObject) {
return constructParams(types, [
keyObject.oid,
keyObject.Q,
{ hash: keyObject.hash, cipher: keyObject.cipher },
keyObject.d
]);
});
default:
throw new Error('Invalid public key algorithm.');
}
@ -299,65 +314,43 @@ export default {
/**
* Validate algorithm-specific key parameters
* @param {module:enums.publicKey} algo The public key algorithm
* @param {Array} params The array of parameters
* @returns {Promise<Boolean>} whether the parameters are valid
* @param {Object} publicParams Algorithm-specific public key parameters
* @param {Object} privateParams Algorithm-specific private key parameters
* @returns {Promise<Boolean>} whether the parameters are valid
* @async
*/
validateParams: async function(algo, params) {
validateParams: async function(algo, publicParams, privateParams) {
if (!publicParams || !privateParams) {
throw new Error('Missing key parameters');
}
switch (algo) {
case enums.publicKey.rsaEncrypt:
case enums.publicKey.rsaEncryptSign:
case enums.publicKey.rsaSign: {
if (params.length < 6) {
throw new Error('Missing key parameters');
}
const n = params[0].toUint8Array();
const e = params[1].toUint8Array();
const d = params[2].toUint8Array();
const p = params[3].toUint8Array();
const q = params[4].toUint8Array();
const u = params[5].toUint8Array();
const { n, e } = publicParams;
const { d, p, q, u } = privateParams;
return publicKey.rsa.validateParams(n, e, d, p, q, u);
}
case enums.publicKey.dsa: {
if (params.length < 5) {
throw new Error('Missing key parameters');
}
const p = params[0].toUint8Array();
const q = params[1].toUint8Array();
const g = params[2].toUint8Array();
const y = params[3].toUint8Array();
const x = params[4].toUint8Array();
const { p, q, g, y } = publicParams;
const { x } = privateParams;
return publicKey.dsa.validateParams(p, q, g, y, x);
}
case enums.publicKey.elgamal: {
if (params.length < 4) {
throw new Error('Missing key parameters');
}
const p = params[0].toUint8Array();
const g = params[1].toUint8Array();
const y = params[2].toUint8Array();
const x = params[3].toUint8Array();
const { p, g, y } = publicParams;
const { x } = privateParams;
return publicKey.elgamal.validateParams(p, g, y, x);
}
case enums.publicKey.ecdsa:
case enums.publicKey.ecdh: {
const expectedLen = algo === enums.publicKey.ecdh ? 3 : 2;
if (params.length < expectedLen) {
throw new Error('Missing key parameters');
}
const algoModule = publicKey.elliptic[enums.read(enums.publicKey, algo)];
const { oid, Q, d } = algoModule.parseParams(params);
const { oid, Q } = publicParams;
const { d } = privateParams;
return algoModule.validateParams(oid, Q, d);
}
case enums.publicKey.eddsa: {
const expectedLen = 3;
if (params.length < expectedLen) {
throw new Error('Missing key parameters');
}
const { oid, Q, seed } = publicKey.elliptic.eddsa.parseParams(params);
const { oid, Q } = publicParams;
const { seed } = privateParams;
return publicKey.elliptic.eddsa.validateParams(oid, Q, seed);
}
default:

View File

@ -36,16 +36,21 @@ export default {
* DSA Sign function
* @param {Integer} hash_algo
* @param {Uint8Array} hashed
* @param {BigInteger} g
* @param {BigInteger} p
* @param {BigInteger} q
* @param {BigInteger} x
* @returns {{ r: BigInteger, s: BigInteger }}
* @param {Uint8Array} g
* @param {Uint8Array} p
* @param {Uint8Array} q
* @param {Uint8Array} x
* @returns {{ r: Uint8Array, s: Uint8Array }}
* @async
*/
sign: async function(hash_algo, hashed, g, p, q, x) {
const BigInteger = await util.getBigInteger();
const one = new BigInteger(1);
p = new BigInteger(p);
q = new BigInteger(q);
g = new BigInteger(g);
x = new BigInteger(x);
let k;
let r;
let s;
@ -87,30 +92,37 @@ export default {
/**
* DSA Verify function
* @param {Integer} hash_algo
* @param {BigInteger} r
* @param {BigInteger} s
* @param {Uint8Array} r
* @param {Uint8Array} s
* @param {Uint8Array} hashed
* @param {BigInteger} g
* @param {BigInteger} p
* @param {BigInteger} q
* @param {BigInteger} y
* @param {Uint8Array} g
* @param {Uint8Array} p
* @param {Uint8Array} q
* @param {Uint8Array} y
* @returns {boolean}
* @async
*/
verify: async function(hash_algo, r, s, hashed, g, p, q, y) {
const BigInteger = await util.getBigInteger();
const zero = new BigInteger(0);
r = new BigInteger(r);
s = new BigInteger(s);
p = new BigInteger(p);
q = new BigInteger(q);
g = new BigInteger(g);
y = new BigInteger(y);
if (r.lte(zero) || r.gte(q) ||
s.lte(zero) || s.gte(q)) {
util.printDebug("invalid DSA Signature");
return null;
return false;
}
const h = new BigInteger(hashed.subarray(0, q.byteLength())).imod(q);
const w = s.modInv(q); // s**-1 mod q
if (w.isZero()) {
util.printDebug("invalid DSA Signature");
return null;
return false;
}
g = g.mod(p);

View File

@ -24,38 +24,55 @@
import util from '../../util';
import random from '../random';
import pkcs1 from '../pkcs1';
export default {
/**
* ElGamal Encryption function
* @param {BigInteger} m
* @param {BigInteger} p
* @param {BigInteger} g
* @param {BigInteger} y
* @returns {{ c1: BigInteger, c2: BigInteger }}
* Note that in OpenPGP, the message needs to be padded with PKCS#1 (same as RSA)
* @param {Uint8Array} data to be padded and encrypted
* @param {Uint8Array} p
* @param {Uint8Array} g
* @param {Uint8Array} y
* @returns {{ c1: Uint8Array, c2: Uint8Array }}
* @async
*/
encrypt: async function(m, p, g, y) {
encrypt: async function(data, p, g, y) {
const BigInteger = await util.getBigInteger();
// See Section 11.5 here: https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf
const k = await random.getRandomBigInteger(new BigInteger(0), p); // returns in [0, p-1]
p = new BigInteger(p);
g = new BigInteger(g);
y = new BigInteger(y);
const padded = await pkcs1.eme.encode(data, p.byteLength());
const m = new BigInteger(padded);
// OpenPGP uses a "special" version of ElGamal where g is generator of the full group Z/pZ*
// hence g has order p-1, and to avoid that k = 0 mod p-1, we need to pick k in [1, p-2]
const k = await random.getRandomBigInteger(new BigInteger(1), p.dec());
return {
c1: g.modExp(k, p),
c2: y.modExp(k, p).imul(m).imod(p)
c1: g.modExp(k, p).toUint8Array(),
c2: y.modExp(k, p).imul(m).imod(p).toUint8Array()
};
},
/**
* ElGamal Encryption function
* @param {BigInteger} c1
* @param {BigInteger} c2
* @param {BigInteger} p
* @param {BigInteger} x
* @returns BigInteger
* @param {Uint8Array} c1
* @param {Uint8Array} c2
* @param {Uint8Array} p
* @param {Uint8Array} x
* @returns {Uint8Array} unpadded message
* @async
*/
decrypt: async function(c1, c2, p, x) {
return c1.modExp(x, p).modInv(p).imul(c2).imod(p);
const BigInteger = await util.getBigInteger();
c1 = new BigInteger(c1);
c2 = new BigInteger(c2);
p = new BigInteger(p);
x = new BigInteger(x);
const padded = c1.modExp(x, p).modInv(p).imul(c2).imod(p);
return pkcs1.eme.decode(padded.toUint8Array('be', p.byteLength()));
},
/**

View File

@ -214,10 +214,12 @@ async function generate(curve) {
curve = new Curve(curve);
const keyPair = await curve.genKeyPair();
const Q = new BigInteger(keyPair.publicKey).toUint8Array();
const secret = new BigInteger(keyPair.privateKey).toUint8Array('be', curve.payloadSize);
return {
oid: curve.oid,
Q: new BigInteger(keyPair.publicKey),
d: new BigInteger(keyPair.privateKey),
Q,
secret,
hash: curve.hash,
cipher: curve.cipher
};

View File

@ -37,6 +37,8 @@ import random from '../../random';
import hash from '../../hash';
import enums from '../../../enums';
import util from '../../../util';
import pkcs5 from '../../pkcs5';
import MPI from '../../../type/mpi';
import { keyFromPublic, keyFromPrivate, getIndutnyCurve } from './indutnyKey';
const webCrypto = util.getWebCrypto();
@ -65,31 +67,6 @@ function buildEcdhParam(public_algo, oid, kdfParams, fingerprint) {
]);
}
/**
* Parses MPI params and returns them as byte arrays of fixed length
* @param {Array} params key parameters
* @returns {Object} parameters in the form
* { oid, kdfParams, d: Uint8Array, Q: Uint8Array }
*/
function parseParams(params) {
if (params.length < 3 || params.length > 4) {
throw new Error('Unexpected number of parameters');
}
const oid = params[0];
const curve = new Curve(oid);
const parsedParams = { oid };
// The public point never has leading zeros, as it is prefixed by 0x40 or 0x04
parsedParams.Q = params[1].toUint8Array();
parsedParams.kdfParams = params[2];
if (params.length === 4) {
parsedParams.d = params[3].toUint8Array('be', curve.payloadSize);
}
return parsedParams;
}
// Key Derivation Function (RFC 6637)
async function kdf(hash_algo, X, length, param, stripLeading = false, stripTrailing = false) {
// Note: X is little endian for Curve25519, big-endian for all others.
@ -151,13 +128,15 @@ async function genPublicEphemeralKey(curve, Q) {
*
* @param {module:type/oid} oid Elliptic curve object identifier
* @param {module:type/kdf_params} kdfParams KDF params including cipher and algorithm to use
* @param {module:type/mpi} m Value derived from session key (RFC 6637)
* @param {Uint8Array} data Unpadded session key data
* @param {Uint8Array} Q Recipient public key
* @param {Uint8Array} fingerprint Recipient fingerprint
* @returns {Promise<{publicKey: Uint8Array, wrappedKey: Uint8Array}>}
* @async
*/
async function encrypt(oid, kdfParams, m, Q, fingerprint) {
async function encrypt(oid, kdfParams, data, Q, fingerprint) {
const m = new MPI(pkcs5.encode(data));
const curve = new Curve(oid);
const { publicKey, sharedKey } = await genPublicEphemeralKey(curve, Q);
const param = buildEcdhParam(enums.publicKey.ecdh, oid, kdfParams, fingerprint);
@ -214,12 +193,10 @@ async function genPrivateEphemeralKey(curve, V, Q, d) {
* @param {Uint8Array} Q Recipient public key
* @param {Uint8Array} d Recipient private key
* @param {Uint8Array} fingerprint Recipient fingerprint
* @returns {Promise<BigInteger>} Value derived from session key
* @returns {Promise<Uint8Array>} Value derived from session key
* @async
*/
async function decrypt(oid, kdfParams, V, C, Q, d, fingerprint) {
const BigInteger = await util.getBigInteger();
const curve = new Curve(oid);
const { sharedKey } = await genPrivateEphemeralKey(curve, V, Q, d);
const param = buildEcdhParam(enums.publicKey.ecdh, oid, kdfParams, fingerprint);
@ -229,7 +206,7 @@ async function decrypt(oid, kdfParams, V, C, Q, d, fingerprint) {
try {
// Work around old go crypto bug and old OpenPGP.js bug, respectively.
const Z = await kdf(kdfParams.hash, sharedKey, cipher[cipher_algo].keySize, param, i === 1, i === 2);
return new BigInteger(aes_kw.unwrap(Z, C));
return pkcs5.decode(aes_kw.unwrap(Z, C));
} catch (e) {
err = e;
}
@ -411,4 +388,4 @@ async function nodePublicEphemeralKey(curve, Q) {
return { publicKey, sharedKey };
}
export default { encrypt, decrypt, genPublicEphemeralKey, genPrivateEphemeralKey, buildEcdhParam, kdf, webPublicEphemeralKey, webPrivateEphemeralKey, ellipticPublicEphemeralKey, ellipticPrivateEphemeralKey, nodePublicEphemeralKey, nodePrivateEphemeralKey, validateParams, parseParams };
export default { encrypt, decrypt, genPublicEphemeralKey, genPrivateEphemeralKey, buildEcdhParam, kdf, webPublicEphemeralKey, webPrivateEphemeralKey, ellipticPublicEphemeralKey, ellipticPrivateEphemeralKey, nodePublicEphemeralKey, nodePrivateEphemeralKey, validateParams };

View File

@ -152,31 +152,7 @@ async function validateParams(oid, Q, d) {
}
}
/**
* Parses MPI params and returns them as byte arrays of fixed length
* @param {Array} params key parameters
* @returns {Object} parameters in the form
* { oid, d: Uint8Array, Q: Uint8Array }
*/
function parseParams(params) {
if (params.length < 2 || params.length > 3) {
throw new Error('Unexpected number of parameters');
}
const oid = params[0];
const curve = new Curve(oid);
const parsedParams = { oid };
// The public point never has leading zeros, as it is prefixed by 0x40 or 0x04
parsedParams.Q = params[1].toUint8Array();
if (params.length === 3) {
parsedParams.d = params[2].toUint8Array('be', curve.payloadSize);
}
return parsedParams;
}
export default { sign, verify, ellipticVerify, ellipticSign, validateParams, parseParams };
export default { sign, verify, ellipticVerify, ellipticSign, validateParams };
//////////////////////////

View File

@ -92,28 +92,4 @@ async function validateParams(oid, Q, k) {
return util.equalsUint8Array(Q, dG);
}
/**
* Parses MPI params and returns them as byte arrays of fixed length
* @param {Array} params key parameters
* @returns {Object} parameters in the form
* { oid, seed: Uint8Array, Q: Uint8Array }
*/
function parseParams(params) {
if (params.length < 2 || params.length > 3) {
throw new Error('Unexpected number of parameters');
}
const parsedParams = {
oid: params[0],
Q: params[1].toUint8Array('be', 33)
};
if (params.length === 3) {
parsedParams.seed = params[2].toUint8Array('be', 32);
}
return parsedParams;
}
export default { sign, verify, validateParams, parseParams };
export default { sign, verify, validateParams };

View File

@ -171,14 +171,13 @@ export default {
* @param {Integer} bits RSA bit length
* @param {Integer} e RSA public exponent
* @returns {{n, e, d,
* p, q ,u: BigInteger}} RSA public modulus, RSA public exponent, RSA private exponent,
* RSA private prime p, RSA private prime q, u = q ** 1 mod p
* p, q ,u: Uint8Array}} RSA public modulus, RSA public exponent, RSA private exponent,
* RSA private prime p, RSA private prime q, u = p ** -1 mod q
* @async
*/
generate: async function(bits, e) {
const BigInteger = await util.getBigInteger();
let key;
e = new BigInteger(e);
// Native RSA keygen using Web Crypto
@ -221,17 +220,17 @@ export default {
if (jwk instanceof ArrayBuffer) {
jwk = JSON.parse(String.fromCharCode.apply(null, new Uint8Array(jwk)));
}
// map JWK parameters to BN
key = {};
key.n = new BigInteger(util.b64ToUint8Array(jwk.n));
key.e = e;
key.d = new BigInteger(util.b64ToUint8Array(jwk.d));
// switch p and q
key.p = new BigInteger(util.b64ToUint8Array(jwk.q));
key.q = new BigInteger(util.b64ToUint8Array(jwk.p));
// Since p and q are switched in places, we could keep u
key.u = new BigInteger(util.b64ToUint8Array(jwk.qi));
return key;
// map JWK parameters to corresponding OpenPGP names
return {
n: util.b64ToUint8Array(jwk.n),
e: e.toUint8Array(),
d: util.b64ToUint8Array(jwk.d),
// switch p and q
p: util.b64ToUint8Array(jwk.q),
q: util.b64ToUint8Array(jwk.p),
// Since p and q are switched in places, u is the inverse of jwk.q
u: util.b64ToUint8Array(jwk.qi)
};
} else if (util.getNodeCrypto() && nodeCrypto.generateKeyPair && RSAPrivateKey) {
const opts = {
modulusLength: bits,
@ -246,19 +245,20 @@ export default {
resolve(RSAPrivateKey.decode(der, 'der'));
}
}));
/** PGP spec differs from DER spec, DER: `(inverse of q) mod p`, PGP: `(inverse of p) mod q`.
/**
* OpenPGP spec differs from DER spec, DER: `u = (inverse of q) mod p`, OpenPGP: `u = (inverse of p) mod q`.
* @link https://tools.ietf.org/html/rfc3447#section-3.2
* @link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-08#section-5.6.1
*/
return {
n: prv.modulus,
e: prv.publicExponent,
d: prv.privateExponent,
n: prv.modulus.toArrayLike(Uint8Array),
e: prv.publicExponent.toArrayLike(Uint8Array),
d: prv.privateExponent.toArrayLike(Uint8Array),
// switch p and q
p: prv.prime2,
q: prv.prime1,
// Since p and q are switched in places, we could keep u
u: prv.coefficient // PGP type of u
p: prv.prime2.toArrayLike(Uint8Array),
q: prv.prime1.toArrayLike(Uint8Array),
// Since p and q are switched in places, we can keep u as defined by DER
u: prv.coefficient.toArrayLike(Uint8Array)
};
}
@ -271,17 +271,16 @@ export default {
if (q.lt(p)) {
[p, q] = [q, p];
}
const phi = p.dec().imul(q.dec());
return {
n: p.mul(q),
e,
d: e.modInv(phi),
p: p,
q: q,
n: p.mul(q).toUint8Array(),
e: e.toUint8Array(),
d: e.modInv(phi).toUint8Array(),
p: p.toUint8Array(),
q: q.toUint8Array(),
// dp: d.mod(p.subn(1)),
// dq: d.mod(q.subn(1)),
u: p.modInv(q)
u: p.modInv(q).toUint8Array()
};
},

View File

@ -18,45 +18,37 @@ export default {
* See {@link https://tools.ietf.org/html/rfc4880#section-9.1|RFC 4880 9.1}
* and {@link https://tools.ietf.org/html/rfc4880#section-9.4|RFC 4880 9.4}
* for public key and hash algorithms.
* @param {module:enums.publicKey} algo Public key algorithm
* @param {module:enums.hash} hash_algo Hash algorithm
* @param {Array<module:type/mpi>} msg_MPIs Algorithm-specific signature parameters
* @param {Array<module:type/mpi>} pub_MPIs Algorithm-specific public key parameters
* @param {Uint8Array} data Data for which the signature was created
* @param {Uint8Array} hashed The hashed data
* @returns {Boolean} True if signature is valid
* @param {module:enums.publicKey} algo Public key algorithm
* @param {module:enums.hash} hash_algo Hash algorithm
* @param {Array<module:type/mpi>} msg_MPIs Algorithm-specific signature parameters
* @param {Object} publicParams Algorithm-specific public key parameters
* @param {Uint8Array} data Data for which the signature was created
* @param {Uint8Array} hashed The hashed data
* @returns {Boolean} True if signature is valid
* @async
*/
verify: async function(algo, hash_algo, msg_MPIs, pub_MPIs, data, hashed) {
const types = crypto.getPubKeyParamTypes(algo);
if (pub_MPIs.length < types.length) {
throw new Error('Missing public key parameters');
}
verify: async function(algo, hash_algo, msg_MPIs, publicParams, data, hashed) {
switch (algo) {
case enums.publicKey.rsaEncryptSign:
case enums.publicKey.rsaEncrypt:
case enums.publicKey.rsaSign: {
const n = pub_MPIs[0].toUint8Array();
const e = pub_MPIs[1].toUint8Array();
const { n, e } = publicParams;
const m = msg_MPIs[0].toUint8Array('be', n.length);
return publicKey.rsa.verify(hash_algo, data, m, n, e, hashed);
}
case enums.publicKey.dsa: {
const r = await msg_MPIs[0].toBigInteger();
const s = await msg_MPIs[1].toBigInteger();
const p = await pub_MPIs[0].toBigInteger();
const q = await pub_MPIs[1].toBigInteger();
const g = await pub_MPIs[2].toBigInteger();
const y = await pub_MPIs[3].toBigInteger();
const r = await msg_MPIs[0].toUint8Array();
const s = await msg_MPIs[1].toUint8Array();
const { g, p, q, y } = publicParams;
return publicKey.dsa.verify(hash_algo, r, s, hashed, g, p, q, y);
}
case enums.publicKey.ecdsa: {
const { oid, Q } = publicKey.elliptic.ecdsa.parseParams(pub_MPIs);
const { oid, Q } = publicParams;
const signature = { r: msg_MPIs[0].toUint8Array(), s: msg_MPIs[1].toUint8Array() };
return publicKey.elliptic.ecdsa.verify(oid, hash_algo, signature, data, Q, hashed);
}
case enums.publicKey.eddsa: {
const { oid, Q } = publicKey.elliptic.eddsa.parseParams(pub_MPIs);
const { oid, Q } = publicParams;
// EdDSA signature params are expected in little-endian format
const signature = {
R: msg_MPIs[0].toUint8Array('le', 32),
@ -74,37 +66,31 @@ export default {
* See {@link https://tools.ietf.org/html/rfc4880#section-9.1|RFC 4880 9.1}
* and {@link https://tools.ietf.org/html/rfc4880#section-9.4|RFC 4880 9.4}
* for public key and hash algorithms.
* @param {module:enums.publicKey} algo Public key algorithm
* @param {module:enums.hash} hash_algo Hash algorithm
* @param {Array<module:type/mpi>} key_params Algorithm-specific public and private key parameters
* @param {Uint8Array} data Data to be signed
* @param {Uint8Array} hashed The hashed data
* @returns {Uint8Array} Signature
* @param {module:enums.publicKey} algo Public key algorithm
* @param {module:enums.hash} hash_algo Hash algorithm
* @param {Object} publicKeyParams Algorithm-specific public and private key parameters
* @param {Object} privateKeyParams Algorithm-specific public and private key parameters
* @param {Uint8Array} data Data to be signed
* @param {Uint8Array} hashed The hashed data
* @returns {Uint8Array} Signature
* @async
*/
sign: async function(algo, hash_algo, key_params, data, hashed) {
const types = [].concat(crypto.getPubKeyParamTypes(algo), crypto.getPrivKeyParamTypes(algo));
if (key_params.length < types.length) {
throw new Error('Missing private key parameters');
sign: async function(algo, hash_algo, publicKeyParams, privateKeyParams, data, hashed) {
if (!publicKeyParams || !privateKeyParams) {
throw new Error('Missing key parameters');
}
switch (algo) {
case enums.publicKey.rsaEncryptSign:
case enums.publicKey.rsaEncrypt:
case enums.publicKey.rsaSign: {
const n = key_params[0].toUint8Array();
const e = key_params[1].toUint8Array();
const d = key_params[2].toUint8Array();
const p = key_params[3].toUint8Array();
const q = key_params[4].toUint8Array();
const u = key_params[5].toUint8Array();
const { n, e } = publicKeyParams;
const { d, p, q, u } = privateKeyParams;
const signature = await publicKey.rsa.sign(hash_algo, data, n, e, d, p, q, u, hashed);
return util.uint8ArrayToMpi(signature);
}
case enums.publicKey.dsa: {
const p = await key_params[0].toBigInteger();
const q = await key_params[1].toBigInteger();
const g = await key_params[2].toBigInteger();
const x = await key_params[4].toBigInteger();
const { g, p, q } = publicKeyParams;
const { x } = privateKeyParams;
const signature = await publicKey.dsa.sign(hash_algo, hashed, g, p, q, x);
return util.concatUint8Array([
util.uint8ArrayToMpi(signature.r),
@ -115,7 +101,8 @@ export default {
throw new Error('Signing with Elgamal is not defined in the OpenPGP standard.');
}
case enums.publicKey.ecdsa: {
const { oid, Q, d } = publicKey.elliptic.ecdsa.parseParams(key_params);
const { oid, Q } = publicKeyParams;
const { d } = privateKeyParams;
const signature = await publicKey.elliptic.ecdsa.sign(oid, hash_algo, data, Q, d, hashed);
return util.concatUint8Array([
util.uint8ArrayToMpi(signature.r),
@ -123,7 +110,8 @@ export default {
]);
}
case enums.publicKey.eddsa: {
const { oid, Q, seed } = publicKey.elliptic.eddsa.parseParams(key_params);
const { oid, Q } = publicKeyParams;
const { seed } = privateKeyParams;
const signature = await publicKey.elliptic.eddsa.sign(oid, hash_algo, data, Q, seed, hashed);
return util.concatUint8Array([
util.uint8ArrayToMpi(signature.R),

View File

@ -151,7 +151,7 @@ export async function getPreferredHashAlgo(key, keyPacket, date = new Date(), us
case 'ecdh':
case 'ecdsa':
case 'eddsa':
pref_algo = crypto.publicKey.elliptic.getPreferredHashAlgo(keyPacket.params[0]);
pref_algo = crypto.publicKey.elliptic.getPreferredHashAlgo(keyPacket.publicParams.oid);
}
}
return crypto.hash.getHashByteLength(hash_algo) <= crypto.hash.getHashByteLength(pref_algo) ?

View File

@ -29,7 +29,6 @@
import { Sha1 } from 'asmcrypto.js/dist_es8/hash/sha1/sha1';
import { Sha256 } from 'asmcrypto.js/dist_es8/hash/sha256/sha256';
import type_keyid from '../type/keyid';
import type_mpi from '../type/mpi';
import config from '../config';
import crypto from '../crypto';
import enums from '../enums';
@ -70,10 +69,10 @@ class PublicKeyPacket {
*/
this.algorithm = null;
/**
* Algorithm specific params
* @type {Array<Object>}
* Algorithm specific public params
* @type {Object}
*/
this.params = [];
this.publicParams = null;
/**
* Time until expiration in days (V3 only)
* @type {Integer}
@ -116,16 +115,13 @@ class PublicKeyPacket {
pos += 4;
}
// - A series of values comprising the key material. This is
// algorithm-specific and described in section XXXX.
const types = crypto.getPubKeyParamTypes(algo);
this.params = crypto.constructParams(types);
for (let i = 0; i < types.length && pos < bytes.length; i++) {
pos += this.params[i].read(bytes.subarray(pos, bytes.length));
if (pos > bytes.length) {
throw new Error('Error reading MPI @:' + pos);
}
// - A series of values comprising the key material.
try {
const { read, publicParams } = crypto.parsePublicKeyParams(algo, bytes.subarray(pos));
this.publicParams = publicParams;
pos += read;
} catch (err) {
throw new Error('Error reading MPIs');
}
return pos;
@ -134,9 +130,8 @@ class PublicKeyPacket {
}
/**
* Same as write_private_key, but has less information because of
* public key.
* @returns {Uint8Array} OpenPGP packet body contents,
* Creates an OpenPGP public key packet for the given key.
* @returns {Uint8Array} Bytes encoding the public key OpenPGP packet
*/
write() {
const arr = [];
@ -147,8 +142,7 @@ class PublicKeyPacket {
const algo = enums.write(enums.publicKey, this.algorithm);
arr.push(new Uint8Array([algo]));
const paramCount = crypto.getPubKeyParamTypes(algo).length;
const params = util.concatUint8Array(this.params.slice(0, paramCount).map(param => param.write()));
const params = crypto.serializeKeyParams(algo, this.publicParams);
if (this.version === 5) {
// A four-octet scalar octet count for the following key material
arr.push(util.writeNumber(params.length, 4));
@ -243,11 +237,11 @@ class PublicKeyPacket {
getAlgorithmInfo() {
const result = {};
result.algorithm = this.algorithm;
if (this.params[0] instanceof type_mpi) {
result.rsaBits = this.params[0].byteLength() * 8;
if (this.publicParams.n) {
result.rsaBits = this.publicParams.n.length * 8;
result.bits = result.rsaBits; // Deprecated.
} else {
result.curve = this.params[0].getName();
result.curve = this.publicParams.oid.getName();
}
return result;
}

View File

@ -110,7 +110,7 @@ class PublicKeyEncryptedSessionKeyPacket {
]);
const algo = enums.write(enums.publicKey, this.publicKeyAlgorithm);
this.encrypted = await crypto.publicKeyEncrypt(
algo, key.params, data, key.getFingerprintBytes());
algo, key.publicParams, data, key.getFingerprintBytes());
return true;
}
@ -130,7 +130,7 @@ class PublicKeyEncryptedSessionKeyPacket {
if (algo !== keyAlgo) {
throw new Error('Decryption error');
}
const decoded = await crypto.publicKeyDecrypt(algo, key.params, this.encrypted, key.getFingerprintBytes());
const decoded = await crypto.publicKeyDecrypt(algo, key.publicParams, key.privateParams, this.encrypted, key.getFingerprintBytes());
const checksum = decoded.subarray(decoded.length - 2);
const sessionKey = decoded.subarray(1, decoded.length - 2);
if (!util.equalsUint8Array(checksum, util.writeChecksum(sessionKey))) {

View File

@ -73,6 +73,11 @@ class SecretKeyPacket extends PublicKeyPacket {
* @type {String}
*/
this.aead = null;
/**
* Decrypted private parameters, referenced by name
* @type {Object}
*/
this.privateParams = null;
}
// 5.5.3. Secret-Key Packet Formats
@ -154,8 +159,13 @@ class SecretKeyPacket extends PublicKeyPacket {
if (!util.equalsUint8Array(util.writeChecksum(cleartext), this.keyMaterial.subarray(-2))) {
throw new Error('Key checksum mismatch');
}
const privParams = parse_cleartext_params(cleartext, this.algorithm);
this.params = this.params.concat(privParams);
try {
const algo = enums.write(enums.publicKey, this.algorithm);
const { privateParams } = crypto.parsePrivateKeyParams(algo, cleartext, this.publicParams);
this.privateParams = privateParams;
} catch (err) {
throw new Error('Error reading MPIs');
}
}
}
@ -200,7 +210,8 @@ class SecretKeyPacket extends PublicKeyPacket {
if (!this.isDummy()) {
if (!this.s2k_usage) {
const cleartextParams = write_cleartext_params(this.params, this.algorithm);
const algo = enums.write(enums.publicKey, this.algorithm);
const cleartextParams = crypto.serializeKeyParams(algo, this.privateParams);
this.keyMaterial = util.concatUint8Array([
cleartextParams,
util.writeChecksum(cleartextParams)
@ -282,7 +293,8 @@ class SecretKeyPacket extends PublicKeyPacket {
this.s2k = new type_s2k();
this.s2k.salt = await crypto.random.getRandomBytes(8);
const cleartext = write_cleartext_params(this.params, this.algorithm);
const algo = enums.write(enums.publicKey, this.algorithm);
const cleartext = crypto.serializeKeyParams(algo, this.privateParams);
this.symmetric = 'aes256';
const key = await produceEncryptionKey(this.s2k, passphrase, this.symmetric);
const blockLen = crypto.cipher[this.symmetric].blockSize;
@ -354,8 +366,13 @@ class SecretKeyPacket extends PublicKeyPacket {
}
}
const privParams = parse_cleartext_params(cleartext, this.algorithm);
this.params = this.params.concat(privParams);
try {
const algo = enums.write(enums.publicKey, this.algorithm);
const { privateParams } = crypto.parsePrivateKeyParams(algo, cleartext, this.publicParams);
this.privateParams = privateParams;
} catch (err) {
throw new Error('Error reading MPIs');
}
this.isEncrypted = false;
this.keyMaterial = null;
this.s2k_usage = 0;
@ -378,7 +395,14 @@ class SecretKeyPacket extends PublicKeyPacket {
}
const algo = enums.write(enums.publicKey, this.algorithm);
const validParams = await crypto.validateParams(algo, this.params);
let validParams;
try {
// this can throw if some parameters are undefined
validParams = await crypto.validateParams(algo, this.publicParams, this.privateParams);
} catch (_) {
validParams = false;
}
if (!validParams) {
throw new Error('Key is invalid');
}
@ -387,7 +411,9 @@ class SecretKeyPacket extends PublicKeyPacket {
async generate(bits, curve) {
const algo = enums.write(enums.publicKey, this.algorithm);
this.params = await crypto.generateParams(algo, bits, curve);
const { privateParams, publicParams } = await crypto.generateParams(algo, bits, curve);
this.privateParams = privateParams;
this.publicParams = publicParams;
this.isEncrypted = false;
}
@ -400,47 +426,16 @@ class SecretKeyPacket extends PublicKeyPacket {
return;
}
const algo = enums.write(enums.publicKey, this.algorithm);
const publicParamCount = crypto.getPubKeyParamTypes(algo).length;
this.params.slice(publicParamCount).forEach(param => {
param.data.fill(0);
Object.keys(this.privateParams).forEach(name => {
const param = this.privateParams[name];
param.fill(0);
delete this.privateParams[name];
});
this.params.length = publicParamCount;
this.privateParams = null;
this.isEncrypted = true;
}
}
// Helper function
function parse_cleartext_params(cleartext, algorithm) {
const algo = enums.write(enums.publicKey, algorithm);
const types = crypto.getPrivKeyParamTypes(algo);
const params = crypto.constructParams(types);
let p = 0;
for (let i = 0; i < types.length && p < cleartext.length; i++) {
p += params[i].read(cleartext.subarray(p, cleartext.length));
if (p > cleartext.length) {
throw new Error('Error reading param @:' + p);
}
}
return params;
}
function write_cleartext_params(params, algorithm) {
const arr = [];
const algo = enums.write(enums.publicKey, algorithm);
const numPublicParams = crypto.getPubKeyParamTypes(algo).length;
for (let i = numPublicParams; i < params.length; i++) {
arr.push(params[i].write());
}
return util.concatUint8Array(arr);
}
async function produceEncryptionKey(s2k, passphrase, algorithm) {
return s2k.produce_key(
passphrase,

View File

@ -177,9 +177,8 @@ class SignaturePacket {
const hash = await this.hash(signatureType, data, toHash, detached);
this.signedHashValue = stream.slice(stream.clone(hash), 0, 2);
const params = key.params;
const signed = async () => crypto.signature.sign(
publicKeyAlgorithm, hashAlgorithm, params, toHash, await stream.readToEnd(hash)
publicKeyAlgorithm, hashAlgorithm, key.publicParams, key.privateParams, toHash, await stream.readToEnd(hash)
);
if (streaming) {
this.signature = stream.fromAsync(signed);
@ -714,7 +713,7 @@ class SignaturePacket {
i += mpi[j].read(this.signature.subarray(i, this.signature.length), endian);
}
const verified = await crypto.signature.verify(
publicKeyAlgorithm, hashAlgorithm, mpi, key.params,
publicKeyAlgorithm, hashAlgorithm, mpi, key.publicParams,
toHash, hash
);
if (!verified) {

View File

@ -167,6 +167,31 @@ export default {
return str;
},
/**
* Read one MPI from bytes in input
* @param {Uint8Array} bytes input data to parse
* @returns {Uint8Array} parsed MPI
*/
readMPI: function (bytes) {
const bits = (bytes[0] << 8) | bytes[1];
const bytelen = (bits + 7) >>> 3;
return bytes.subarray(2, 2 + bytelen);
},
/**
* Pad Uint8Array to length by adding 0x0 bytes
* @param {Uint8Array} bytes data to pad
* @param {Number} length padded length
* @param {'be'|'le'} endianess endianess of input data
* @return {Uint8Array} padded bytes
*/
padToLength(bytes, length, endianess = 'be') {
const padded = new Uint8Array(length);
const offset = (endianess === 'be') ? 0 : (length - bytes.length);
padded.set(bytes, offset);
return padded;
},
/**
* Convert a Uint8Array to an MPI-formatted Uint8Array.
* Note: the output is **not** an MPI object.

View File

@ -8,7 +8,7 @@ const expect = chai.expect;
module.exports = () => describe('API functional testing', function() {
const util = openpgp.util;
const crypto = openpgp.crypto;
const RSApubMPIstrs = [
const RSAPublicKeyMaterial = util.concatUint8Array([
new Uint8Array([0x08,0x00,0xac,0x15,0xb3,0xd6,0xd2,0x0f,0xf0,0x7a,0xdd,0x21,0xb7,
0xbf,0x61,0xfa,0xca,0x93,0x86,0xc8,0x55,0x5a,0x4b,0xa6,0xa4,0x1a,
0x60,0xa2,0x3a,0x37,0x06,0x08,0xd8,0x15,0x8e,0x85,0x45,0xaa,0xb7,
@ -30,8 +30,8 @@ module.exports = () => describe('API functional testing', function() {
0xee,0xc9,0xa4,0xcd,0x15,0xdc,0x1b,0x8d,0x64,0xc1,0x36,0x17,0xc4,
0x8d,0x5e,0x99,0x7a,0x5b,0x9f,0x39,0xd0,0x00,0x6e,0xf9]),
new Uint8Array([0x00,0x11,0x01,0x00,0x01])
];
const RSAsecMPIstrs = [
]);
const RSAPrivateKeyMaterial = util.concatUint8Array([
new Uint8Array([0x07,0xfe,0x23,0xff,0xce,0x45,0x6c,0x60,0x65,0x40,0x6e,0xae,0x35,
0x10,0x56,0x60,0xee,0xab,0xfa,0x10,0x42,0xba,0xc7,0x04,0xaf,0x63,
0xcd,0x3f,0x62,0xca,0x4b,0xfa,0xe1,0xa9,0x70,0xcd,0x34,0x8b,0xc8,
@ -82,9 +82,9 @@ module.exports = () => describe('API functional testing', function() {
0x51,0xe0,0x22,0xf0,0xff,0xa7,0x42,0xd4,0xde,0x0b,0x47,0x8f,0x2b,
0xf5,0x4d,0x04,0x32,0x91,0x89,0x4b,0x0e,0x05,0x8d,0x70,0xf9,0xbb,
0xe7,0xd6,0x76,0xea,0x0e,0x1a,0x90,0x30,0xf5,0x98,0x01,0xc5,0x73])
];
]);
const DSApubMPIstrs = [
const DSAPublicKeyMaterial = util.concatUint8Array([
new Uint8Array([0x08,0x00,0xa8,0x85,0x5c,0x28,0x05,0x94,0x03,0xbe,0x07,0x6c,0x13,0x3e,0x65,
0xfb,0xb5,0xe1,0x99,0x7c,0xfa,0x84,0xe3,0xac,0x47,0xa5,0xc4,0x46,0xd8,0x5f,
0x44,0xe9,0xc1,0x6b,0x69,0xf7,0x10,0x76,0x49,0xa7,0x25,0x85,0xf4,0x1b,0xed,
@ -142,14 +142,14 @@ module.exports = () => describe('API functional testing', function() {
0x67,0x8d,0x9d,0x14,0xb6,0x9d,0x32,0x82,0xd0,0xb5,0xc6,0x57,0xf0,0x91,0xd9,
0xc3,0x26,0xae,0x9f,0xa9,0x67,0x49,0x96,0x5c,0x07,0x3e,0x47,0x5c,0xed,0x60,
0x07,0xac,0x6a])
];
const DSAsecMPIstrs = [
]);
const DSAPrivateKeyMaterial = util.concatUint8Array([
new Uint8Array([0x01,0x00,0x9b,0x58,0xa8,0xf4,0x04,0xb1,0xd5,0x14,0x09,0xe1,0xe1,0xa1,0x8a,
0x0b,0xa3,0xc3,0xa3,0x66,0xaa,0x27,0x99,0x50,0x1c,0x4d,0xba,0x24,0xee,0xdf,
0xdf,0xb8,0x8e,0x8e])
];
]);
const ElgamalpubMPIstrs = [
const elGamalPublicKeyMaterial = util.concatUint8Array([
new Uint8Array([0x08,0x00,0xea,0xcc,0xbe,0xe2,0xe4,0x5a,0x51,0x18,0x93,0xa1,0x12,0x2f,0x00,
0x99,0x42,0xd8,0x5c,0x1c,0x2f,0xb6,0x3c,0xd9,0x94,0x61,0xb4,0x55,0x8d,0x4e,
0x73,0xe6,0x69,0xbc,0x1d,0x33,0xe3,0x2d,0x91,0x23,0x69,0x95,0x98,0xd7,0x18,
@ -187,64 +187,37 @@ module.exports = () => describe('API functional testing', function() {
0xda,0xba,0x19,0xf3,0xcb,0x10,0xa0,0x6b,0xd0,0x2d,0xbe,0x40,0x42,0x7b,0x9b,
0x15,0xa4,0x2d,0xec,0xcf,0x09,0xd6,0xe3,0x92,0xc3,0x8d,0x65,0x6b,0x60,0x97,
0xda,0x6b,0xca])
];
]);
const ElgamalsecMPIstrs = [
const elGamalPrivateKeyMaterial = util.concatUint8Array([
new Uint8Array([0x01,0x52,0x02,0x80,0x87,0xf6,0xe4,0x49,0xd7,0x2e,0x3e,0xfe,0x60,0xb9,0xa3,
0x2a,0xf0,0x67,0x58,0xe9,0xf6,0x47,0x83,0xde,0x7e,0xfb,0xbb,0xbd,0xdf,0x48,
0x12,0x1b,0x06,0x7d,0x13,0xbc,0x3b,0x49,0xf9,0x86,0xd4,0x53,0xed,0x2d,0x68])
];
]);
const RSApubMPIs = [];
let i;
for (i = 0; i < 2; i++) {
RSApubMPIs[i] = new openpgp.MPI();
RSApubMPIs[i].read(RSApubMPIstrs[i]);
}
const algoRSA = openpgp.enums.publicKey.rsaEncryptSign;
const RSAPublicParams = crypto.parsePublicKeyParams(algoRSA, RSAPublicKeyMaterial).publicParams;
const RSAPrivateParams = crypto.parsePrivateKeyParams(algoRSA, RSAPrivateKeyMaterial).privateParams;
const RSAsecMPIs = [];
for (i = 0; i < 4; i++) {
RSAsecMPIs[i] = new openpgp.MPI();
RSAsecMPIs[i].read(RSAsecMPIstrs[i]);
}
const algoDSA = openpgp.enums.publicKey.dsa;
const DSAPublicParams = crypto.parsePublicKeyParams(algoDSA, DSAPublicKeyMaterial).publicParams;
const DSAPrivateParams = crypto.parsePrivateKeyParams(algoDSA, DSAPrivateKeyMaterial).privateParams;
const DSAsecMPIs = [];
for (i = 0; i < 1; i++) {
DSAsecMPIs[i] = new openpgp.MPI();
DSAsecMPIs[i].read(DSAsecMPIstrs[i]);
}
const DSApubMPIs = [];
for (i = 0; i < 4; i++) {
DSApubMPIs[i] = new openpgp.MPI();
DSApubMPIs[i].read(DSApubMPIstrs[i]);
}
const ElgamalsecMPIs = [];
for (i = 0; i < 1; i++) {
ElgamalsecMPIs[i] = new openpgp.MPI();
ElgamalsecMPIs[i].read(ElgamalsecMPIstrs[i]);
}
const ElgamalpubMPIs = [];
for (i = 0; i < 3; i++) {
ElgamalpubMPIs[i] = new openpgp.MPI();
ElgamalpubMPIs[i].read(ElgamalpubMPIstrs[i]);
}
const algoElGamal = openpgp.enums.publicKey.elgamal;
const elGamalPublicParams = crypto.parsePublicKeyParams(algoElGamal, elGamalPublicKeyMaterial).publicParams;
const elGamalPrivateParams = crypto.parsePrivateKeyParams(algoElGamal, elGamalPrivateKeyMaterial).privateParams;
const data = util.strToUint8Array("foobar");
describe('Sign and verify', function () {
it('RSA', async function () {
// FIXME
//Originally we passed public and secret MPI separately, now they are joined. Is this what we want to do long term?
// RSA
return crypto.signature.sign(
1, 2, RSApubMPIs.concat(RSAsecMPIs), data, await crypto.hash.digest(2, data)
1, 2, RSAPublicParams, RSAPrivateParams, data, await crypto.hash.digest(2, data)
).then(async RSAsignedData => {
const RSAsignedDataMPI = new openpgp.MPI();
RSAsignedDataMPI.read(RSAsignedData);
return crypto.signature.verify(
1, 2, [RSAsignedDataMPI], RSApubMPIs, data, await crypto.hash.digest(2, data)
1, 2, [RSAsignedDataMPI], RSAPublicParams, data, await crypto.hash.digest(2, data)
).then(success => {
return expect(success).to.be.true;
});
@ -252,9 +225,8 @@ module.exports = () => describe('API functional testing', function() {
});
it('DSA', async function () {
// DSA
return crypto.signature.sign(
17, 2, DSApubMPIs.concat(DSAsecMPIs), data, await crypto.hash.digest(2, data)
17, 2, DSAPublicParams, DSAPrivateParams, data, await crypto.hash.digest(2, data)
).then(async DSAsignedData => {
DSAsignedData = util.uint8ArrayToStr(DSAsignedData);
const DSAmsgMPIs = [];
@ -263,7 +235,7 @@ module.exports = () => describe('API functional testing', function() {
DSAmsgMPIs[0].read(DSAsignedData.substring(0,34));
DSAmsgMPIs[1].read(DSAsignedData.substring(34,68));
return crypto.signature.verify(
17, 2, DSAmsgMPIs, DSApubMPIs, data, await crypto.hash.digest(2, data)
17, 2, DSAmsgMPIs, DSAPublicParams, data, await crypto.hash.digest(2, data)
).then(success => {
return expect(success).to.be.true;
});
@ -356,9 +328,9 @@ module.exports = () => describe('API functional testing', function() {
it('Asymmetric using RSA with eme_pkcs1 padding', async function () {
const symmKey = await crypto.generateSessionKey('aes256');
return crypto.publicKeyEncrypt(1, RSApubMPIs, symmKey).then(RSAEncryptedData => {
return crypto.publicKeyEncrypt(algoRSA, RSAPublicParams, symmKey).then(RSAEncryptedData => {
return crypto.publicKeyDecrypt(
1, RSApubMPIs.concat(RSAsecMPIs), RSAEncryptedData
algoRSA, RSAPublicParams, RSAPrivateParams, RSAEncryptedData
).then(data => {
expect(data).to.deep.equal(symmKey);
});
@ -367,9 +339,9 @@ module.exports = () => describe('API functional testing', function() {
it('Asymmetric using Elgamal with eme_pkcs1 padding', async function () {
const symmKey = await crypto.generateSessionKey('aes256');
return crypto.publicKeyEncrypt(16, ElgamalpubMPIs, symmKey).then(ElgamalEncryptedData => {
return crypto.publicKeyEncrypt(algoElGamal, elGamalPublicParams, symmKey).then(ElgamalEncryptedData => {
return crypto.publicKeyDecrypt(
16, ElgamalpubMPIs.concat(ElgamalsecMPIs), ElgamalEncryptedData
algoElGamal, elGamalPublicParams, elGamalPrivateParams, ElgamalEncryptedData
).then(data => {
expect(data).to.deep.equal(symmKey);
});

View File

@ -22,16 +22,11 @@ module.exports = () => (!native ? describe.skip : describe)('basic RSA cryptogra
it('sign and verify using generated key params', async function() {
const bits = openpgp.util.getWebCryptoAll() ? 2048 : 1024;
const keyParams = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const { publicParams, privateParams } = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const message = await openpgp.crypto.random.getRandomBytes(64);
const hash_algo = openpgp.enums.write(openpgp.enums.hash, 'sha256');
const hashed = await openpgp.crypto.hash.digest(hash_algo, message);
const n = keyParams[0].toUint8Array();
const e = keyParams[1].toUint8Array();
const d = keyParams[2].toUint8Array();
const p = keyParams[3].toUint8Array();
const q = keyParams[4].toUint8Array();
const u = keyParams[5].toUint8Array();
const { n, e, d, p, q, u } = { ...publicParams, ...privateParams };
const signature = await openpgp.crypto.publicKey.rsa.sign(hash_algo, message, n, e, d, p, q, u, hashed);
expect(signature).to.exist;
const verify = await openpgp.crypto.publicKey.rsa.verify(hash_algo, message, signature, n, e, hashed);
@ -40,13 +35,8 @@ module.exports = () => (!native ? describe.skip : describe)('basic RSA cryptogra
it('encrypt and decrypt using generated key params', async function() {
const bits = openpgp.util.getWebCryptoAll() ? 2048 : 1024;
const keyParams = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const n = keyParams[0].toUint8Array();
const e = keyParams[1].toUint8Array();
const d = keyParams[2].toUint8Array();
const p = keyParams[3].toUint8Array();
const q = keyParams[4].toUint8Array();
const u = keyParams[5].toUint8Array();
const { publicParams, privateParams } = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const { n, e, d, p, q, u } = { ...publicParams, ...privateParams };
const message = await openpgp.crypto.generateSessionKey('aes256');
const encrypted = await openpgp.crypto.publicKey.rsa.encrypt(message, n, e);
const result = new openpgp.MPI(encrypted);
@ -59,13 +49,8 @@ module.exports = () => (!native ? describe.skip : describe)('basic RSA cryptogra
this.skip();
}
const bits = 1024;
const keyParams = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const n = keyParams[0].toUint8Array();
const e = keyParams[1].toUint8Array();
const d = keyParams[2].toUint8Array();
const p = keyParams[3].toUint8Array();
const q = keyParams[4].toUint8Array();
const u = keyParams[5].toUint8Array();
const { publicParams, privateParams } = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const { n, e, d, p, q, u } = { ...publicParams, ...privateParams };
const message = await openpgp.crypto.generateSessionKey('aes256');
const encryptedBn = await openpgp.crypto.publicKey.rsa.bnEncrypt(message, n, e);
const decrypted1 = await openpgp.crypto.publicKey.rsa.nodeDecrypt(encryptedBn, n, e, d, p, q, u);
@ -80,13 +65,8 @@ module.exports = () => (!native ? describe.skip : describe)('basic RSA cryptogra
this.skip();
}
const bits = openpgp.util.getWebCrypto() ? 2048 : 1024;
const keyParams = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const n = keyParams[0].toUint8Array();
const e = keyParams[1].toUint8Array();
const d = keyParams[2].toUint8Array();
const p = keyParams[3].toUint8Array();
const q = keyParams[4].toUint8Array();
const u = keyParams[5].toUint8Array();
const { publicParams, privateParams } = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const { n, e, d, p, q, u } = { ...publicParams, ...privateParams };
const message = await openpgp.crypto.random.getRandomBytes(64);
const hashName = 'sha256';
const hash_algo = openpgp.enums.write(openpgp.enums.hash, hashName);
@ -107,13 +87,8 @@ module.exports = () => (!native ? describe.skip : describe)('basic RSA cryptogra
this.skip();
}
const bits = openpgp.util.getWebCrypto() ? 2048 : 1024;
const keyParams = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const n = keyParams[0].toUint8Array();
const e = keyParams[1].toUint8Array();
const d = keyParams[2].toUint8Array();
const p = keyParams[3].toUint8Array();
const q = keyParams[4].toUint8Array();
const u = keyParams[5].toUint8Array();
const { publicParams, privateParams } = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const { n, e, d, p, q, u } = { ...publicParams, ...privateParams };
const message = await openpgp.crypto.random.getRandomBytes(64);
const hashName = 'sha256';
const hash_algo = openpgp.enums.write(openpgp.enums.hash, hashName);
@ -137,13 +112,8 @@ module.exports = () => (!native ? describe.skip : describe)('basic RSA cryptogra
this.skip();
}
const bits = 1024;
const keyParams = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const n = keyParams[0].toUint8Array();
const e = keyParams[1].toUint8Array();
const d = keyParams[2].toUint8Array();
const p = keyParams[3].toUint8Array();
const q = keyParams[4].toUint8Array();
const u = keyParams[5].toUint8Array();
const { publicParams, privateParams } = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const { n, e, d, p, q, u } = { ...publicParams, ...privateParams };
const message = await openpgp.crypto.random.getRandomBytes(64);
const hashName = 'sha256';
const hash_algo = openpgp.enums.write(openpgp.enums.hash, hashName);
@ -158,13 +128,8 @@ module.exports = () => (!native ? describe.skip : describe)('basic RSA cryptogra
this.skip();
}
const bits = openpgp.util.getWebCrypto() ? 2048 : 1024;
const keyParams = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const n = keyParams[0].toUint8Array();
const e = keyParams[1].toUint8Array();
const d = keyParams[2].toUint8Array();
const p = keyParams[3].toUint8Array();
const q = keyParams[4].toUint8Array();
const u = keyParams[5].toUint8Array();
const { publicParams, privateParams } = await openpgp.crypto.generateParams(openpgp.enums.publicKey.rsaSign, bits);
const { n, e, d, p, q, u } = { ...publicParams, ...privateParams };
const message = await openpgp.crypto.random.getRandomBytes(64);
const hashName = 'sha256';
const hash_algo = openpgp.enums.write(openpgp.enums.hash, hashName);

View File

@ -93,12 +93,12 @@ module.exports = () => {
it('detect invalid edDSA Q', async function() {
const eddsaKeyPacket = cloneKeyPacket(eddsaKey);
const Q = eddsaKeyPacket.params[1];
Q.data[0]++;
const Q = eddsaKeyPacket.publicParams.Q;
Q[0]++;
await expect(eddsaKeyPacket.validate()).to.be.rejectedWith('Key is invalid');
const infQ = new Uint8Array(Q.data.length);
eddsaKeyPacket.params[1] = new openpgp.MPI(infQ);
const infQ = new Uint8Array(Q.length);
eddsaKeyPacket.publicParams.Q = infQ;
await expect(eddsaKeyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
});
@ -114,86 +114,78 @@ module.exports = () => {
});
it('EdDSA params are not valid for ECDH', async function() {
const oid = eddsaKey.keyPacket.params[0];
const Q = eddsaKey.keyPacket.params[1];
const seed = eddsaKey.keyPacket.params[2];
const { oid, Q } = eddsaKey.keyPacket.publicParams;
const { seed } = eddsaKey.keyPacket.privateParams;
const ecdhKeyPacket = cloneKeyPacket(ecdhKey);
const ecdhOID = ecdhKeyPacket.params[0];
const ecdhOID = ecdhKeyPacket.publicParams.oid;
ecdhKeyPacket.params[0] = oid;
ecdhKeyPacket.publicParams.oid = oid;
await expect(ecdhKeyPacket.validate()).to.be.rejectedWith('Key is invalid');
ecdhKeyPacket.params[0] = ecdhOID;
ecdhKeyPacket.params[1] = Q;
ecdhKeyPacket.params[3] = seed;
ecdhKeyPacket.publicParams.oid = ecdhOID;
ecdhKeyPacket.publicParams.Q = Q;
ecdhKeyPacket.privateParams.d = seed;
await expect(ecdhKeyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
it('EdDSA params are not valid for EcDSA', async function() {
const oid = eddsaKey.keyPacket.params[0];
const Q = eddsaKey.keyPacket.params[1];
const seed = eddsaKey.keyPacket.params[2];
const { oid, Q } = eddsaKey.keyPacket.publicParams;
const { seed } = eddsaKey.keyPacket.privateParams;
const ecdsaKeyPacket = cloneKeyPacket(ecdsaKey);
const ecdsaOID = ecdsaKeyPacket.params[0];
ecdsaKeyPacket.params[0] = oid;
const ecdsaOID = ecdsaKeyPacket.publicParams.oid;
ecdsaKeyPacket.publicParams.oid = oid;
await expect(ecdsaKeyPacket.validate()).to.be.rejectedWith('Key is invalid');
ecdsaKeyPacket.params[0] = ecdsaOID;
ecdsaKeyPacket.params[1] = Q;
ecdsaKeyPacket.params[2] = seed;
ecdsaKeyPacket.publicParams.oid = ecdsaOID;
ecdsaKeyPacket.publicParams.Q = Q;
ecdsaKeyPacket.privateParams.d = seed;
await expect(ecdsaKeyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
it('ECDH x25519 params are not valid for EcDSA', async function() {
const ecdh25519KeyPacket = ecdhKey.keyPacket;
const oid = ecdh25519KeyPacket.params[0];
const Q = ecdh25519KeyPacket.params[1];
const d = ecdh25519KeyPacket.params[3];
const { oid, Q } = ecdhKey.keyPacket.publicParams;
const { d } = ecdhKey.keyPacket.privateParams;
const ecdsaKeyPacket = cloneKeyPacket(ecdsaKey);
ecdsaKeyPacket.params[0] = oid;
ecdsaKeyPacket.params[1] = Q;
ecdsaKeyPacket.params[2] = d;
ecdsaKeyPacket.publicParams.oid = oid;
ecdsaKeyPacket.publicParams.Q = Q;
ecdsaKeyPacket.privateParams.d = d;
await expect(ecdsaKeyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
it('EcDSA params are not valid for EdDSA', async function() {
const oid = ecdsaKey.keyPacket.params[0];
const Q = ecdsaKey.keyPacket.params[1];
const d = ecdsaKey.keyPacket.params[2];
const { oid, Q } = ecdsaKey.keyPacket.publicParams;
const { d } = ecdsaKey.keyPacket.privateParams;
const eddsaKeyPacket = cloneKeyPacket(eddsaKey);
const eddsaOID = eddsaKeyPacket.params[0];
eddsaKeyPacket.params[0] = oid;
const eddsaOID = eddsaKeyPacket.publicParams.oid;
eddsaKeyPacket.publicParams.oid = oid;
await expect(eddsaKeyPacket.validate()).to.be.rejectedWith('Key is invalid');
eddsaKeyPacket.params[0] = eddsaOID;
eddsaKeyPacket.params[1] = Q;
eddsaKeyPacket.params[2] = d;
eddsaKeyPacket.publicParams.oid = eddsaOID;
eddsaKeyPacket.publicParams.Q = Q;
eddsaKeyPacket.privateParams.seed = d;
await expect(eddsaKeyPacket.validate()).to.be.rejected;
});
it('ECDH x25519 params are not valid for EdDSA', async function() {
const ecdh25519KeyPacket = ecdhKey.keyPacket;
const oid = ecdh25519KeyPacket.params[0];
const Q = ecdh25519KeyPacket.params[1];
const d = ecdh25519KeyPacket.params[3];
const { oid, Q } = ecdhKey.keyPacket.publicParams;
const { d } = ecdhKey.keyPacket.privateParams;
const eddsaKeyPacket = cloneKeyPacket(eddsaKey);
const eddsaOID = eddsaKeyPacket.params[0];
eddsaKeyPacket.params[0] = oid;
const eddsaOID = eddsaKeyPacket.publicParams.oid;
eddsaKeyPacket.publicParams.oid = oid;
await expect(eddsaKeyPacket.validate()).to.be.rejectedWith('Key is invalid');
eddsaKeyPacket.params[0] = eddsaOID;
eddsaKeyPacket.params[1] = Q;
eddsaKeyPacket.params[2] = d;
eddsaKeyPacket.publicParams.oid = eddsaOID;
eddsaKeyPacket.publicParams.Q = Q;
eddsaKeyPacket.privateParams.seed = d;
await expect(eddsaKeyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
});
const curves = ['curve25519', 'p256', 'p384', 'p521', 'secp256k1', 'brainpoolP256r1', 'brainpoolP384r1', 'brainpoolP512r1'];
curves.forEach(curve => {
describe(`ECC ${curve} parameter validation`, () => {
@ -216,12 +208,12 @@ module.exports = () => {
it('detect invalid EcDSA Q', async function() {
const keyPacket = cloneKeyPacket(ecdsaKey);
const Q = keyPacket.params[1];
Q.data[0]++;
const Q = keyPacket.publicParams.Q;
Q[0]++;
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
const infQ = new Uint8Array(Q.data.length);
keyPacket.params[1] = new openpgp.MPI(infQ);
const infQ = new Uint8Array(Q.length);
keyPacket.publicParams.Q = infQ;
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
}
@ -232,12 +224,12 @@ module.exports = () => {
it('detect invalid ECDH Q', async function() {
const keyPacket = cloneKeyPacket(ecdhKey);
const Q = keyPacket.params[1];
Q.data[16]++;
const Q = keyPacket.publicParams.Q;
Q[16]++;
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
const infQ = new Uint8Array(Q.data.length);
keyPacket.params[1] = new openpgp.MPI(infQ);
const infQ = new Uint8Array(Q.length);
keyPacket.publicParams.Q = infQ;
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
});
@ -255,15 +247,15 @@ module.exports = () => {
it('detect invalid RSA n', async function() {
const keyPacket = cloneKeyPacket(rsaKey);
const n = keyPacket.params[0];
n.data[0]++;
const n = keyPacket.publicParams.n;
n[0]++;
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
it('detect invalid RSA e', async function() {
const keyPacket = cloneKeyPacket(rsaKey);
const e = keyPacket.params[1];
e.data[0]++;
const e = keyPacket.publicParams.e;
e[0]++;
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
});
@ -280,28 +272,27 @@ module.exports = () => {
it('detect invalid DSA p', async function() {
const keyPacket = cloneKeyPacket(dsaKey);
const p = keyPacket.params[0];
p.data[0]++;
const p = keyPacket.publicParams.p;
p[0]++;
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
it('detect invalid DSA y', async function() {
const keyPacket = cloneKeyPacket(dsaKey);
const y = keyPacket.params[3];
const y = keyPacket.publicParams.y;
y.data[0]++;
y[0]++;
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
it('detect invalid DSA g', async function() {
const keyPacket = cloneKeyPacket(dsaKey);
const g = keyPacket.params[2];
const g = keyPacket.publicParams.g;
g.data[0]++;
g[0]++;
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
const gOne = new openpgp.MPI(new Uint8Array([1]));
keyPacket.params[2] = gOne;
keyPacket.publicParams.g = new Uint8Array([1]);
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
});
@ -318,40 +309,39 @@ module.exports = () => {
it('detect invalid p', async function() {
const keyPacket = cloneKeyPacket(egKey);
const p = keyPacket.params[0];
p.data[0]++;
const p = keyPacket.publicParams.p;
p[0]++;
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
it('detect invalid y', async function() {
const keyPacket = cloneKeyPacket(egKey);
const y = keyPacket.params[2];
y.data[0]++;
const y = keyPacket.publicParams.y;
y[0]++;
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
it('detect invalid g', async function() {
const keyPacket = cloneKeyPacket(egKey);
const g = keyPacket.params[1];
const g = keyPacket.publicParams.g;
g.data[0]++;
g[0]++;
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
const gOne = new openpgp.MPI(new Uint8Array([1]));
keyPacket.params[1] = gOne;
keyPacket.publicParams.g = new Uint8Array([1]);
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
it('detect g with small order', async function() {
const keyPacket = cloneKeyPacket(egKey);
const p = keyPacket.params[0].toUint8Array();
const g = keyPacket.params[1].toUint8Array();
const p = keyPacket.publicParams.p;
const g = keyPacket.publicParams.g;
const pBN = new BN(p);
const gModP = new BN(g).toRed(new BN.red(pBN));
// g**(p-1)/2 has order 2
const gOrd2 = gModP.redPow(pBN.subn(1).shrn(1));
keyPacket.params[1] = new openpgp.MPI(gOrd2.toArrayLike(Uint8Array, 'be'));
keyPacket.publicParams.g = gOrd2.toArrayLike(Uint8Array, 'be');
await expect(keyPacket.validate()).to.be.rejectedWith('Key is invalid');
});
});

View File

@ -2584,6 +2584,17 @@ function versionSpecificTests() {
}
module.exports = () => describe('Key', function() {
async function deepCopyKeyParams(params) {
const paramsCopy = {};
Object.keys(params).forEach(name => {
const param = params[name];
const copy = new Uint8Array(param.length);
copy.set(param);
paramsCopy[name] = copy;
});
return paramsCopy;
}
let rsaGenStub;
let v5KeysVal;
let aeadProtectVal;
@ -2594,8 +2605,9 @@ module.exports = () => describe('Key', function() {
};
beforeEach(function() {
// We fake the generation function to speed up the tests
rsaGenStub = stub(openpgp.crypto.publicKey.rsa, 'generate');
rsaGenStub.callsFake(N => rsaGenValue[N]);
rsaGenStub.callsFake(async N => deepCopyKeyParams(await rsaGenValue[N]));
});
afterEach(function() {
@ -2882,7 +2894,7 @@ module.exports = () => describe('Key', function() {
key.primaryKey.makeDummy();
expect(key.primaryKey.isDummy()).to.be.true;
await key.validate();
await expect(openpgp.reformatKey({ privateKey: key, userIds: 'test2 <b@a.com>' })).to.be.rejectedWith(/Missing private key parameters/);
await expect(openpgp.reformatKey({ privateKey: key, userIds: 'test2 <b@a.com>' })).to.be.rejectedWith(/Missing key parameters/);
});
it('makeDummy() - subkeys of the converted key can still sign', async function() {
@ -2905,25 +2917,28 @@ module.exports = () => describe('Key', function() {
const key = await openpgp.key.readArmored(priv_key_rsa);
await key.decrypt('hello world');
const signingKeyPacket = key.subKeys[0].keyPacket;
const params = signingKeyPacket.params;
const privateParams = signingKeyPacket.privateParams;
await key.clearPrivateParams();
key.primaryKey.isEncrypted = false;
key.primaryKey.params = params;
key.primaryKey.privateParams = privateParams;
key.subKeys[0].keyPacket.isEncrypted = false;
key.subKeys[0].keyPacket.params = params;
await expect(key.validate()).to.be.rejectedWith('Missing key parameters');
key.subKeys[0].keyPacket.privateParams = privateParams;
await expect(key.validate()).to.be.rejectedWith('Key is invalid');
});
it('clearPrivateParams() - detect that private key parameters were zeroed out', async function() {
const key = await openpgp.key.readArmored(priv_key_rsa);
await key.decrypt('hello world');
const signingKeyPacket = key.subKeys[0].keyPacket;
const params = signingKeyPacket.params.slice();
const privateParams = {};
Object.entries(signingKeyPacket.privateParams).forEach(([name, value]) => {
privateParams[name] = value;
});
await key.clearPrivateParams();
key.primaryKey.isEncrypted = false;
key.primaryKey.params = params;
key.primaryKey.privateParams = privateParams;
key.subKeys[0].keyPacket.isEncrypted = false;
key.subKeys[0].keyPacket.params = params;
key.subKeys[0].keyPacket.privateParams = privateParams;
await expect(key.validate()).to.be.rejectedWith('Key is invalid');
});
@ -3398,9 +3413,9 @@ VYGdb3eNlV8CfoEC
const subKey = newPrivateKey.subKeys[total];
expect(subKey).to.exist;
expect(newPrivateKey.subKeys.length).to.be.equal(total + 1);
const subkeyN = subKey.keyPacket.params[0];
const pkN = privateKey.primaryKey.params[0];
expect(subkeyN.byteLength()).to.be.equal(rsaBits ? (rsaBits / 8) : pkN.byteLength());
const subkeyN = subKey.keyPacket.publicParams.n;
const pkN = privateKey.primaryKey.publicParams.n;
expect(subkeyN.length).to.be.equal(rsaBits ? (rsaBits / 8) : pkN.length);
expect(subKey.getAlgorithmInfo().algorithm).to.be.equal('rsaEncryptSign');
expect(subKey.getAlgorithmInfo().rsaBits).to.be.equal(rsaBits || privateKey.getAlgorithmInfo().rsaBits);
await subKey.verify(newPrivateKey.primaryKey);
@ -3446,8 +3461,8 @@ VYGdb3eNlV8CfoEC
expect(subKey1.getKeyId().toHex()).to.be.equal(subKey.getKeyId().toHex());
expect(subKey).to.exist;
expect(newPrivateKey.subKeys.length).to.be.equal(total + 1);
const subkeyOid = subKey.keyPacket.params[0];
const pkOid = privateKey.primaryKey.params[0];
const subkeyOid = subKey.keyPacket.publicParams.oid;
const pkOid = privateKey.primaryKey.publicParams.oid;
expect(subkeyOid.getName()).to.be.equal(pkOid.getName());
expect(subKey.getAlgorithmInfo().algorithm).to.be.equal('eddsa');
await subKey.verify(privateKey.primaryKey);
@ -3464,7 +3479,7 @@ VYGdb3eNlV8CfoEC
const subKey = newPrivateKey.subKeys[total];
expect(subKey).to.exist;
expect(newPrivateKey.subKeys.length).to.be.equal(total + 1);
expect(subKey.keyPacket.params[0].getName()).to.be.equal(openpgp.enums.curve.curve25519);
expect(subKey.keyPacket.publicParams.oid.getName()).to.be.equal(openpgp.enums.curve.curve25519);
expect(subKey.getAlgorithmInfo().algorithm).to.be.equal('ecdh');
await subKey.verify(privateKey.primaryKey);
});
@ -3479,8 +3494,8 @@ VYGdb3eNlV8CfoEC
const armoredKey = newPrivateKey.armor();
newPrivateKey = await openpgp.key.readArmored(armoredKey);
const subKey = newPrivateKey.subKeys[total];
const subkeyOid = subKey.keyPacket.params[0];
const pkOid = newPrivateKey.primaryKey.params[0];
const subkeyOid = subKey.keyPacket.publicParams.oid;
const pkOid = newPrivateKey.primaryKey.publicParams.oid;
expect(subkeyOid.getName()).to.be.equal(pkOid.getName());
expect(subKey.getAlgorithmInfo().algorithm).to.be.equal('eddsa');
await subKey.verify(newPrivateKey.primaryKey);

View File

@ -549,13 +549,24 @@ function withCompression(tests) {
}
module.exports = () => describe('OpenPGP.js public api tests', function() {
async function deepCopyKeyParams(params) {
const paramsCopy = {};
Object.keys(params).forEach(name => {
const param = params[name];
const copy = new Uint8Array(param.length);
copy.set(param);
paramsCopy[name] = copy;
});
return paramsCopy;
}
let rsaGenStub;
let rsaGenValue = openpgp.crypto.publicKey.rsa.generate(openpgp.util.getWebCryptoAll() ? 2048 : 512, 65537);
const rsaGenValue = openpgp.crypto.publicKey.rsa.generate(openpgp.util.getWebCryptoAll() ? 2048 : 512, 65537);
beforeEach(function() {
// We fake the generation function to speed up the tests
rsaGenStub = stub(openpgp.crypto.publicKey.rsa, 'generate');
rsaGenStub.returns(rsaGenValue);
rsaGenStub.returns(async () => deepCopyKeyParams(await rsaGenValue()));
});
afterEach(function() {
@ -2329,7 +2340,7 @@ module.exports = () => describe('OpenPGP.js public api tests', function() {
const pubKeyDE = await openpgp.key.readArmored(pub_key_de);
const privKeyDE = await openpgp.key.readArmored(priv_key_de);
// corrupt the public key params
privKeyDE.subKeys[0].keyPacket.params[0].data[0]++;
privKeyDE.subKeys[0].keyPacket.publicParams.p[0]++;
// validation will not check the decryption subkey and will succeed
await privKeyDE.decrypt(passphrase);
const encrypted = await openpgp.encrypt({

View File

@ -6,6 +6,7 @@ chai.use(require('chai-as-promised'));
const { expect } = chai;
const input = require('./testInputs.js');
const { PacketList } = require('../../dist/node/openpgp.min');
function stringify(array) {
if (openpgp.util.isStream(array)) {
@ -315,16 +316,10 @@ module.exports = () => describe("Packet", function() {
});
it('Public key encrypted symmetric key packet', function() {
const rsa = openpgp.crypto.publicKey.rsa;
const rsa = openpgp.enums.publicKey.rsaEncryptSign;
const keySize = openpgp.util.getWebCryptoAll() ? 2048 : 512; // webkit webcrypto accepts minimum 2048 bit keys
return rsa.generate(keySize, 65537).then(function(mpiGen) {
let mpi = [mpiGen.n, mpiGen.e, mpiGen.d, mpiGen.p, mpiGen.q, mpiGen.u];
mpi = mpi.map(function(k) {
return new openpgp.MPI(k);
});
return openpgp.crypto.generateParams(rsa, keySize, 65537).then(function({ publicParams, privateParams }) {
const enc = new openpgp.PublicKeyEncryptedSessionKeyPacket();
const msg = new openpgp.PacketList();
const msg2 = new openpgp.PacketList();
@ -333,14 +328,12 @@ module.exports = () => describe("Packet", function() {
enc.publicKeyAlgorithm = 'rsaEncryptSign';
enc.sessionKeyAlgorithm = 'aes256';
enc.publicKeyId.bytes = '12345678';
return enc.encrypt({ params: mpi, getFingerprintBytes() {} }).then(async () => {
return enc.encrypt({ publicParams, getFingerprintBytes() {} }).then(async () => {
msg.push(enc);
await msg2.read(msg.write(), openpgp);
return msg2[0].decrypt({ algorithm: 'rsaEncryptSign', params: mpi, getFingerprintBytes() {} }).then(() => {
return msg2[0].decrypt({ algorithm: 'rsaEncryptSign', publicParams, privateParams, getFingerprintBytes() {} }).then(() => {
expect(stringify(msg2[0].sessionKey)).to.equal(stringify(enc.sessionKey));
expect(msg2[0].sessionKeyAlgorithm).to.equal(enc.sessionKeyAlgorithm);
});
@ -841,82 +834,67 @@ V+HOQJQxXJkVRYa3QrFUehiMzTeqqMdgC6ZqJy7+
expect(rawNotations[1].humanReadable).to.equal(true);
});
it('Writing and encryption of a secret key packet.', function() {
const key = new openpgp.PacketList();
key.push(new openpgp.SecretKeyPacket());
const rsa = openpgp.crypto.publicKey.rsa;
it('Writing and encryption of a secret key packet (AEAD)', async function() {
const rsa = openpgp.enums.publicKey.rsaEncryptSign;
const keySize = openpgp.util.getWebCryptoAll() ? 2048 : 512; // webkit webcrypto accepts minimum 2048 bit keys
const { privateParams, publicParams } = await openpgp.crypto.generateParams(rsa, keySize, 65537);
return rsa.generate(keySize, 65537).then(async function(mpiGen) {
let mpi = [mpiGen.n, mpiGen.e, mpiGen.d, mpiGen.p, mpiGen.q, mpiGen.u];
mpi = mpi.map(function(k) {
return new openpgp.MPI(k);
});
const secretKeyPacket = new openpgp.SecretKeyPacket();
secretKeyPacket.privateParams = privateParams;
secretKeyPacket.publicParams = publicParams;
secretKeyPacket.algorithm = "rsaSign";
secretKeyPacket.isEncrypted = false;
await secretKeyPacket.encrypt('hello');
key[0].params = mpi;
key[0].algorithm = "rsaSign";
key[0].isEncrypted = false;
await key[0].encrypt('hello');
const raw = new openpgp.PacketList();
raw.push(secretKeyPacket);
const packetList = new openpgp.PacketList();
await packetList.read(raw.write(), openpgp);
const secretKeyPacket2 = packetList[0];
await secretKeyPacket2.decrypt('hello');
const raw = key.write();
const key2 = new openpgp.PacketList();
await key2.read(raw, openpgp);
await key2[0].decrypt('hello');
expect(key[0].params.toString()).to.equal(key2[0].params.toString());
});
expect(secretKeyPacket2.privateParams).to.deep.equal(secretKeyPacket.privateParams);
expect(secretKeyPacket2.publicParams).to.deep.equal(secretKeyPacket.publicParams);
});
it('Writing and encryption of a secret key packet. (AEAD)', async function() {
let aeadProtectVal = openpgp.config.aeadProtect;
openpgp.config.aeadProtect = true;
it('Writing and encryption of a secret key packet (CFB)', async function() {
const aeadProtectVal = openpgp.config.aeadProtect;
openpgp.config.aeadProtect = false;
const key = new openpgp.PacketList();
key.push(new openpgp.SecretKeyPacket());
const rsa = openpgp.crypto.publicKey.rsa;
const rsa = openpgp.enums.publicKey.rsaEncryptSign;
const keySize = openpgp.util.getWebCryptoAll() ? 2048 : 512; // webkit webcrypto accepts minimum 2048 bit keys
try {
const mpiGen = await rsa.generate(keySize, 65537);
let mpi = [mpiGen.n, mpiGen.e, mpiGen.d, mpiGen.p, mpiGen.q, mpiGen.u];
mpi = mpi.map(function(k) {
return new openpgp.MPI(k);
});
const { privateParams, publicParams } = await openpgp.crypto.generateParams(rsa, keySize, 65537);
const secretKeyPacket = new openpgp.SecretKeyPacket();
secretKeyPacket.privateParams = privateParams;
secretKeyPacket.publicParams = publicParams;
secretKeyPacket.algorithm = "rsaSign";
secretKeyPacket.isEncrypted = false;
await secretKeyPacket.encrypt('hello');
key[0].params = mpi;
key[0].algorithm = "rsaSign";
key[0].isEncrypted = false;
await key[0].encrypt('hello');
const raw = key.write();
const key2 = new openpgp.PacketList();
await key2.read(raw, openpgp);
await key2[0].decrypt('hello');
expect(key[0].params.toString()).to.equal(key2[0].params.toString());
const raw = new openpgp.PacketList();
raw.push(secretKeyPacket);
const packetList = new openpgp.PacketList();
await packetList.read(raw.write(), openpgp);
const secretKeyPacket2 = packetList[0];
await secretKeyPacket2.decrypt('hello');
} finally {
openpgp.config.aeadProtect = aeadProtectVal;
}
});
it('Writing and verification of a signature packet.', function() {
it('Writing and verification of a signature packet', function() {
const key = new openpgp.SecretKeyPacket();
const rsa = openpgp.crypto.publicKey.rsa;
const rsa = openpgp.enums.publicKey.rsaEncryptSign;
const keySize = openpgp.util.getWebCryptoAll() ? 2048 : 512; // webkit webcrypto accepts minimum 2048 bit keys
return rsa.generate(keySize, 65537).then(function(mpiGen) {
let mpi = [mpiGen.n, mpiGen.e, mpiGen.d, mpiGen.p, mpiGen.q, mpiGen.u];
mpi = mpi.map(function(k) {
return new openpgp.MPI(k);
});
return openpgp.crypto.generateParams(rsa, keySize, 65537).then(function({ privateParams, publicParams }) {
const testText = input.createSomeMessage();
key.params = mpi;
key.publicParams = publicParams;
key.privateParams = privateParams;
key.algorithm = "rsaSign";
const signed = new openpgp.PacketList();

View File

@ -877,9 +877,9 @@ hUhMKMuiM3pRwdIyDOItkUWQmjEEw7/XmhgInkXsCw==
expect(msg.signatures).to.have.length(1);
expect(msg.signatures[0].valid).to.be.true;
expect(msg.signatures[0].signature.packets.length).to.equal(1);
await expect(openpgp.sign({ message: openpgp.message.fromText('test'), privateKeys: [priv_key_gnupg_ext] })).to.eventually.be.rejectedWith('Missing private key parameters');
await expect(openpgp.reformatKey({ userIds: { name: 'test' }, privateKey: priv_key_gnupg_ext })).to.eventually.be.rejectedWith('Missing private key parameters');
await expect(openpgp.reformatKey({ userIds: { name: 'test' }, privateKey: priv_key_gnupg_ext_2, passphrase: 'test' })).to.eventually.be.rejectedWith('Missing private key parameters');
await expect(openpgp.sign({ message: openpgp.message.fromText('test'), privateKeys: [priv_key_gnupg_ext] })).to.eventually.be.rejectedWith(/Missing key parameters/);
await expect(openpgp.reformatKey({ userIds: { name: 'test' }, privateKey: priv_key_gnupg_ext })).to.eventually.be.rejectedWith(/Missing key parameters/);
await expect(openpgp.reformatKey({ userIds: { name: 'test' }, privateKey: priv_key_gnupg_ext_2, passphrase: 'test' })).to.eventually.be.rejectedWith(/Missing key parameters/);
await priv_key_gnupg_ext.encrypt("abcd");
expect(priv_key_gnupg_ext.isDecrypted()).to.be.false;
const primaryKey_packet2 = priv_key_gnupg_ext.primaryKey.write();

View File

@ -1,18 +1,17 @@
/**
* Generates a 64 character long javascript string out of the whole utf-8 range.
*/
function createSomeMessage(){
let arr = [];
for (let i = 0; i < 30; i++) {
arr.push(Math.floor(Math.random() * 10174) + 1);
}
for (let i = 0; i < 10; i++) {
arr.push(0x1F600 + Math.floor(Math.random() * (0x1F64F - 0x1F600)) + 1);
}
return ' \t' + String.fromCodePoint(...arr).replace(/\r/g, '\n') + ' \t\n한국어/조선말';
const arr = [];
for (let i = 0; i < 30; i++) {
arr.push(Math.floor(Math.random() * 10174) + 1);
}
for (let i = 0; i < 10; i++) {
arr.push(0x1F600 + Math.floor(Math.random() * (0x1F64F - 0x1F600)) + 1);
}
return ' \t' + String.fromCodePoint(...arr).replace(/\r/g, '\n') + ' \t\n한국어/조선말';
}
module.exports = {
createSomeMessage: createSomeMessage
createSomeMessage: createSomeMessage
};

View File

@ -219,22 +219,24 @@ module.exports = () => (openpgp.config.ci ? describe.skip : describe)('X25519 Cr
const { publicKey } = openpgp.crypto.publicKey.nacl.sign.keyPair.fromSeed(openpgp.util.hexToUint8Array(vector.SECRET_KEY));
expect(publicKey).to.deep.equal(openpgp.util.hexToUint8Array(vector.PUBLIC_KEY));
const data = util.strToUint8Array(vector.MESSAGE);
const keyIntegers = [
new openpgp.OID(curve.oid),
new openpgp.MPI(util.hexToStr('40'+vector.PUBLIC_KEY)),
new openpgp.MPI(util.hexToStr(vector.SECRET_KEY))
];
const privateParams = {
seed: util.hexToUint8Array(vector.SECRET_KEY)
};
const publicParams = {
oid: new openpgp.OID(curve.oid),
Q: util.hexToUint8Array('40' + vector.PUBLIC_KEY)
};
const msg_MPIs = [
new openpgp.MPI(util.uint8ArrayToStr(util.hexToUint8Array(vector.SIGNATURE.R).reverse())),
new openpgp.MPI(util.uint8ArrayToStr(util.hexToUint8Array(vector.SIGNATURE.S).reverse()))
];
return Promise.all([
signature.sign(22, undefined, keyIntegers, undefined, data).then(signed => {
const len = ((signed[0] << 8| signed[1]) + 7) / 8;
signature.sign(22, undefined, publicParams, privateParams, undefined, data).then(signed => {
const len = (((signed[0] << 8) | signed[1]) + 7) / 8;
expect(util.hexToUint8Array(vector.SIGNATURE.R)).to.deep.eq(signed.slice(2, 2 + len));
expect(util.hexToUint8Array(vector.SIGNATURE.S)).to.deep.eq(signed.slice(4 + len));
}),
signature.verify(22, undefined, msg_MPIs, keyIntegers, undefined, data).then(result => {
signature.verify(22, undefined, msg_MPIs, publicParams, undefined, data).then(result => {
expect(result).to.be.true;
})
]);
@ -242,63 +244,44 @@ module.exports = () => (openpgp.config.ci ? describe.skip : describe)('X25519 Cr
it('Signature of empty string', function () {
return testVector({
SECRET_KEY:
['9d61b19deffd5a60ba844af492ec2cc4',
'4449c5697b326919703bac031cae7f60'].join(''),
PUBLIC_KEY:
['d75a980182b10ab7d54bfed3c964073a',
'0ee172f3daa62325af021a68f707511a'].join(''),
SECRET_KEY: '9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60',
PUBLIC_KEY: 'd75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a',
MESSAGE: '',
SIGNATURE:
{ R: ['e5564300c360ac729086e2cc806e828a',
'84877f1eb8e5d974d873e06522490155'].join(''),
S: ['5fb8821590a33bacc61e39701cf9b46b',
'd25bf5f0595bbe24655141438e7a100b'].join('') }
SIGNATURE: {
R: 'e5564300c360ac729086e2cc806e828a84877f1eb8e5d974d873e06522490155',
S: '5fb8821590a33bacc61e39701cf9b46bd25bf5f0595bbe24655141438e7a100b'
}
});
});
it('Signature of single byte', function () {
return testVector({
SECRET_KEY:
['4ccd089b28ff96da9db6c346ec114e0f',
'5b8a319f35aba624da8cf6ed4fb8a6fb'].join(''),
PUBLIC_KEY:
['3d4017c3e843895a92b70aa74d1b7ebc',
'9c982ccf2ec4968cc0cd55f12af4660c'].join(''),
SECRET_KEY: '4ccd089b28ff96da9db6c346ec114e0f5b8a319f35aba624da8cf6ed4fb8a6fb',
PUBLIC_KEY: '3d4017c3e843895a92b70aa74d1b7ebc9c982ccf2ec4968cc0cd55f12af4660c',
MESSAGE: util.hexToStr('72'),
SIGNATURE:
{ R: ['92a009a9f0d4cab8720e820b5f642540',
'a2b27b5416503f8fb3762223ebdb69da'].join(''),
S: ['085ac1e43e15996e458f3613d0f11d8c',
'387b2eaeb4302aeeb00d291612bb0c00'].join('') }
SIGNATURE: {
R: '92a009a9f0d4cab8720e820b5f642540a2b27b5416503f8fb3762223ebdb69da',
S: '085ac1e43e15996e458f3613d0f11d8c387b2eaeb4302aeeb00d291612bb0c00'
}
});
});
it('Signature of two bytes', function () {
return testVector({
SECRET_KEY:
['c5aa8df43f9f837bedb7442f31dcb7b1',
'66d38535076f094b85ce3a2e0b4458f7'].join(''),
PUBLIC_KEY:
['fc51cd8e6218a1a38da47ed00230f058',
'0816ed13ba3303ac5deb911548908025'].join(''),
SECRET_KEY: 'c5aa8df43f9f837bedb7442f31dcb7b166d38535076f094b85ce3a2e0b4458f7',
PUBLIC_KEY: 'fc51cd8e6218a1a38da47ed00230f0580816ed13ba3303ac5deb911548908025',
MESSAGE: util.hexToStr('af82'),
SIGNATURE:
{ R: ['6291d657deec24024827e69c3abe01a3',
'0ce548a284743a445e3680d7db5ac3ac'].join(''),
S: ['18ff9b538d16f290ae67f760984dc659',
'4a7c15e9716ed28dc027beceea1ec40a'].join('') }
SIGNATURE: {
R: '6291d657deec24024827e69c3abe01a30ce548a284743a445e3680d7db5ac3ac',
S: '18ff9b538d16f290ae67f760984dc6594a7c15e9716ed28dc027beceea1ec40a'
}
});
});
it('Signature of 1023 bytes', function () {
return testVector({
SECRET_KEY:
['f5e5767cf153319517630f226876b86c',
'8160cc583bc013744c6bf255f5cc0ee5'].join(''),
PUBLIC_KEY:
['278117fc144c72340f67d0f2316e8386',
'ceffbf2b2428c9c51fef7c597f1d426e'].join(''),
SECRET_KEY: 'f5e5767cf153319517630f226876b86c8160cc583bc013744c6bf255f5cc0ee5',
PUBLIC_KEY: '278117fc144c72340f67d0f2316e8386ceffbf2b2428c9c51fef7c597f1d426e',
MESSAGE: util.hexToStr([
'08b8b2b733424243760fe426a4b54908',
'632110a66c2f6591eabd3345e3e4eb98',
@ -365,39 +348,32 @@ module.exports = () => (openpgp.config.ci ? describe.skip : describe)('X25519 Cr
'0618983f8741c5ef68d3a101e8a3b8ca',
'c60c905c15fc910840b94c00a0b9d0'
].join('')),
SIGNATURE:
{ R: ['0aab4c900501b3e24d7cdf4663326a3a',
'87df5e4843b2cbdb67cbf6e460fec350'].join(''),
S: ['aa5371b1508f9f4528ecea23c436d94b',
'5e8fcd4f681e30a6ac00a9704a188a03'].join('') }
SIGNATURE: {
R: '0aab4c900501b3e24d7cdf4663326a3a87df5e4843b2cbdb67cbf6e460fec350',
S: 'aa5371b1508f9f4528ecea23c436d94b5e8fcd4f681e30a6ac00a9704a188a03'
}
});
});
it('Signature of SHA(abc)', function () {
return testVector({
SECRET_KEY:
['833fe62409237b9d62ec77587520911e',
'9a759cec1d19755b7da901b96dca3d42'].join(''),
PUBLIC_KEY:
['ec172b93ad5e563bf4932c70e1245034',
'c35467ef2efd4d64ebf819683467e2bf'].join(''),
SECRET_KEY: '833fe62409237b9d62ec77587520911e9a759cec1d19755b7da901b96dca3d42',
PUBLIC_KEY: 'ec172b93ad5e563bf4932c70e1245034c35467ef2efd4d64ebf819683467e2bf',
MESSAGE: util.hexToStr([
'ddaf35a193617abacc417349ae204131',
'12e6fa4e89a97ea20a9eeee64b55d39a',
'2192992a274fc1a836ba3c23a3feebbd',
'454d4423643ce80e2a9ac94fa54ca49f'
].join('')),
SIGNATURE:
{ R: ['dc2a4459e7369633a52b1bf277839a00',
'201009a3efbf3ecb69bea2186c26b589'].join(''),
S: ['09351fc9ac90b3ecfdfbc7c66431e030',
'3dca179c138ac17ad9bef1177331a704'].join('') }
SIGNATURE: {
R: 'dc2a4459e7369633a52b1bf277839a00201009a3efbf3ecb69bea2186c26b589',
S: '09351fc9ac90b3ecfdfbc7c66431e0303dca179c138ac17ad9bef1177331a704'
}
});
});
});
/* TODO how does GPG2 accept this?
it('Should handle little-endian parameters in EdDSA', function () {
it('Should handle little-endian parameters in EdDSA', async function () {
const pubKey = [
'-----BEGIN PGP PUBLIC KEY BLOCK-----',
'Version: OpenPGP.js v3.0.0',
@ -412,19 +388,18 @@ module.exports = () => (openpgp.config.ci ? describe.skip : describe)('X25519 Cr
'FQIbDAAAhNQBAKmy4gPorjbwTwy5usylHttP28XnTdaGkZ1E7Rc3G9luAQCs',
'Gbm1oe83ZB+0aSp5m34YkpHQNb80y8PGFy7nIexiAA==',
'=xeG/',
'-----END PGP PUBLIC KEY BLOCK-----'].join('\n');
'-----END PGP PUBLIC KEY BLOCK-----'
].join('\n');
const hi = await openpgp.key.readArmored(pubKey);
const results = hi.getPrimaryUser();
const results = await hi.getPrimaryUser();
// console.log(results);
expect(results).to.exist;
expect(results.user).to.exist;
const user = results.user;
expect(user.selfCertifications[0].verify(
hi.primaryKey, {userId: user.userId, key: hi.primaryKey}
)).to.eventually.be.true;
await user.verifyCertificate(
hi.primaryKey, user.selfCertifications[0], [hi]
);
}); */
});
describe('X25519 Omnibus Tests', omnibus);
});