Code style

This commit is contained in:
Daniel Huigens 2018-04-17 16:16:48 +02:00
parent 51d7860622
commit 69762f95de
3 changed files with 154 additions and 139 deletions

View File

@ -14,17 +14,47 @@ const nodeCrypto = util.getNodeCrypto();
const Buffer = util.getNodeBuffer();
/**
* This implementation of CMAC is based on the description of OMAC in
* http://web.cs.ucdavis.edu/~rogaway/papers/eax.pdf. As per that
* document:
*
* We have made a small modification to the OMAC algorithm as it was
* originally presented, changing one of its two constants.
* Specifically, the constant 4 at line 85 was the constant 1/2 (the
* multiplicative inverse of 2) in the original definition of OMAC [14].
* The OMAC authors indicate that they will promulgate this modification
* [15], which slightly simplifies implementations.
*/
const blockLength = 16;
function set_xor_r(S, T) {
const offset = S.length - blockLength;
/**
* xor `padding` into the end of `data`. This function implements "the
* operation xor [which] xors the shorter string into the end of longer
* one". Since data is always as least as long as padding, we can
* simplify the implementation.
* @param {Uint8Array} data
* @param {Uint8Array} padding
*/
function rightXorMut(data, padding) {
const offset = data.length - blockLength;
for (let i = 0; i < blockLength; i++) {
S[i + offset] ^= T[i];
data[i + offset] ^= padding[i];
}
return S;
return data;
}
/**
* 2L = L<<1 if the first bit of L is 0 and 2L = (L<<1) xor (0^120 ||
* 10000111) otherwise, where L<<1 means the left shift of L by one
* position (the first bit vanishing and a zero entering into the last
* bit). The value of 4L is simply 2(2L). We warn that to avoid side-
* channel attacks one must implement the doubling operation in a
* constant-time manner.
* @param {Uint8Array} data
*/
function mul2(data) {
const t = data[0] & 0x80;
for (let i = 0; i < 15; i++) {
@ -34,33 +64,39 @@ function mul2(data) {
return data;
}
const zeros_16 = new Uint8Array(16);
export default async function CMAC(key) {
const cbc = await CBC(key);
const padding = mul2(await cbc(zeros_16));
const padding2 = mul2(padding.slice());
return async function(data) {
return (await cbc(pad(data, padding, padding2))).subarray(-blockLength);
};
}
function pad(data, padding, padding2) {
// if |M| in {n, 2n, 3n, ...}
if (data.length % blockLength === 0) {
return set_xor_r(data, padding);
// then return M xor→ B,
return rightXorMut(data, padding);
}
// else return (M || 10^(n1(|M| mod n))) xor→ P
const padded = new Uint8Array(data.length + (blockLength - data.length % blockLength));
padded.set(data);
padded[data.length] = 0b10000000;
return set_xor_r(padded, padding2);
return rightXorMut(padded, padding2);
}
const zeroBlock = new Uint8Array(blockLength);
export default async function CMAC(key) {
const cbc = await CBC(key);
// L ← E_K(0^n); B ← 2L; P ← 4L
const padding = mul2(await cbc(zeroBlock));
const padding2 = mul2(padding.slice());
return async function(data) {
// return CBC_K(pad(M; B, P))
return (await cbc(pad(data, padding, padding2))).subarray(-blockLength);
};
}
async function CBC(key) {
if (util.getWebCryptoAll() && key.length !== 24) { // WebCrypto (no 192 bit support) see: https://www.chromium.org/blink/webcrypto#TOC-AES-support
key = await webCrypto.importKey('raw', key, { name: 'AES-CBC', length: key.length * 8 }, false, ['encrypt']);
return async function(pt) {
const ct = await webCrypto.encrypt({ name: 'AES-CBC', iv: zeros_16, length: blockLength * 8 }, key, pt);
const ct = await webCrypto.encrypt({ name: 'AES-CBC', iv: zeroBlock, length: blockLength * 8 }, key, pt);
return new Uint8Array(ct).subarray(0, ct.byteLength - blockLength);
};
}
@ -68,13 +104,13 @@ async function CBC(key) {
key = new Buffer(key);
return async function(pt) {
pt = new Buffer(pt);
const en = new nodeCrypto.createCipheriv('aes-' + (key.length * 8) + '-cbc', key, zeros_16);
const en = new nodeCrypto.createCipheriv('aes-' + (key.length * 8) + '-cbc', key, zeroBlock);
const ct = en.update(pt);
return new Uint8Array(ct);
};
}
// asm.js fallback
return async function(pt) {
return AES_CBC.encrypt(pt, key, false, zeros_16);
return AES_CBC.encrypt(pt, key, false, zeroBlock);
};
}

View File

@ -37,14 +37,14 @@ const blockLength = 16;
const ivLength = blockLength;
const tagLength = blockLength;
const zero = new Uint8Array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
const one = new Uint8Array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
const two = new Uint8Array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]);
const zero = new Uint8Array(blockLength);
const one = new Uint8Array(blockLength); one[blockLength - 1] = 1;
const two = new Uint8Array(blockLength); two[blockLength - 1] = 2;
async function OMAC(key) {
const cmac = await CMAC(key);
return function(t, message) {
return cmac(concat(t, message));
return cmac(util.concatUint8Array([t, message]));
};
}
@ -101,16 +101,19 @@ async function EAX(cipher, key) {
*/
encrypt: async function(plaintext, nonce, adata) {
const [
_nonce,
_adata
omacNonce,
omacAdata
] = await Promise.all([
omac(zero, nonce),
omac(one, adata)
]);
const ciphered = await ctr(plaintext, _nonce);
const _ciphered = await omac(two, ciphered);
const tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac(*).length === tagLength.
return concat(ciphered, tag);
const ciphered = await ctr(plaintext, omacNonce);
const omacCiphered = await omac(two, ciphered);
const tag = omacCiphered; // Assumes that omac(*).length === tagLength.
for (let i = 0; i < tagLength; i++) {
tag[i] ^= omacAdata[i] ^ omacNonce[i];
}
return util.concatUint8Array([ciphered, tag]);
},
/**
@ -122,20 +125,23 @@ async function EAX(cipher, key) {
*/
decrypt: async function(ciphertext, nonce, adata) {
if (ciphertext.length < tagLength) throw new Error('Invalid EAX ciphertext');
const ciphered = ciphertext.subarray(0, ciphertext.length - tagLength);
const tag = ciphertext.subarray(ciphertext.length - tagLength);
const ciphered = ciphertext.subarray(0, -tagLength);
const ctTag = ciphertext.subarray(-tagLength);
const [
_nonce,
_adata,
_ciphered
omacNonce,
omacAdata,
omacCiphered
] = await Promise.all([
omac(zero, nonce),
omac(one, adata),
omac(two, ciphered)
]);
const _tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac(*).length === tagLength.
if (!util.equalsUint8Array(tag, _tag)) throw new Error('Authentication tag mismatch in EAX ciphertext');
const plaintext = await ctr(ciphered, _nonce);
const tag = omacCiphered; // Assumes that omac(*).length === tagLength.
for (let i = 0; i < tagLength; i++) {
tag[i] ^= omacAdata[i] ^ omacNonce[i];
}
if (!util.equalsUint8Array(ctTag, tag)) throw new Error('Authentication tag mismatch in EAX ciphertext');
const plaintext = await ctr(ciphered, omacNonce);
return plaintext;
}
};
@ -159,19 +165,3 @@ EAX.blockLength = blockLength;
EAX.ivLength = ivLength;
export default EAX;
//////////////////////////
// //
// Helper functions //
// //
//////////////////////////
function xor3(a, b, c) {
return a.map((n, i) => n ^ b[i] ^ c[i]);
}
function concat(...arrays) {
return util.concatUint8Array(arrays);
}

View File

@ -36,13 +36,6 @@ const ivLength = 15;
const tagLength = 16;
const { shiftLeft, shiftRight } = util;
function zeros(bytes) {
return new Uint8Array(bytes);
}
function ntz(n) {
let ntz = 0;
for(let i = 1; (n & i) === 0; i <<= 1) {
@ -51,7 +44,7 @@ function ntz(n) {
return ntz;
}
function set_xor(S, T) {
function xorMut(S, T) {
for (let i = 0; i < S.length; i++) {
S[i] ^= T[i];
}
@ -59,16 +52,12 @@ function set_xor(S, T) {
}
function xor(S, T) {
return set_xor(S.slice(), T);
}
function concat(...arrays) {
return util.concatUint8Array(arrays);
return xorMut(S.slice(), T);
}
function double(S) {
const double = S.slice();
shiftLeft(double, 1);
util.shiftLeft(double, 1);
if (S[0] & 0b10000000) {
double[15] ^= 0b10000111;
}
@ -76,7 +65,7 @@ function double(S) {
}
const zeros_16 = zeros(16);
const zeroBlock = new Uint8Array(blockLength);
const one = new Uint8Array([1]);
/**
@ -86,7 +75,7 @@ const one = new Uint8Array([1]);
*/
async function OCB(cipher, key) {
let max_ntz = 0;
let maxNtz = 0;
let kv;
constructKeyVariables(cipher, key);
@ -96,45 +85,45 @@ async function OCB(cipher, key) {
const encipher = aes.encrypt.bind(aes);
const decipher = aes.decrypt.bind(aes);
const L_x = encipher(zeros_16);
const L_$ = double(L_x);
const L = [];
L[0] = double(L_$);
const mask_x = encipher(zeroBlock);
const mask_$ = double(mask_x);
const mask = [];
mask[0] = double(mask_$);
L.x = L_x;
L.$ = L_$;
mask.x = mask_x;
mask.$ = mask_$;
kv = { encipher, decipher, L };
kv = { encipher, decipher, mask };
}
function extendKeyVariables(text, adata) {
const { L } = kv;
const new_max_ntz = util.nbits(Math.max(text.length, adata.length) >> 4) - 1;
for (let i = max_ntz + 1; i <= new_max_ntz; i++) {
L[i] = double(L[i - 1]);
const { mask } = kv;
const newMaxNtz = util.nbits(Math.max(text.length, adata.length) >> 4) - 1;
for (let i = maxNtz + 1; i <= newMaxNtz; i++) {
mask[i] = double(mask[i - 1]);
}
max_ntz = new_max_ntz;
maxNtz = newMaxNtz;
}
function hash(adata) {
if (!adata.length) {
// Fast path
return zeros_16;
return zeroBlock;
}
const { encipher, L } = kv;
const { encipher, mask } = kv;
//
// Consider A as a sequence of 128-bit blocks
//
const m = adata.length >> 4;
const offset = zeros(16);
const sum = zeros(16);
const offset = new Uint8Array(16);
const sum = new Uint8Array(16);
for (let i = 0; i < m; i++) {
set_xor(offset, L[ntz(i + 1)]);
set_xor(sum, encipher(xor(offset, adata)));
xorMut(offset, mask[ntz(i + 1)]);
xorMut(sum, encipher(xor(offset, adata)));
adata = adata.subarray(16);
}
@ -142,14 +131,14 @@ async function OCB(cipher, key) {
// Process any final partial block; compute final hash value
//
if (adata.length) {
set_xor(offset, L.x);
xorMut(offset, mask.x);
const cipherInput = zeros(16);
const cipherInput = new Uint8Array(16);
cipherInput.set(adata, 0);
cipherInput[adata.length] = 0b10000000;
set_xor(cipherInput, offset);
xorMut(cipherInput, offset);
set_xor(sum, encipher(cipherInput));
xorMut(sum, encipher(cipherInput));
}
return sum;
@ -174,22 +163,22 @@ async function OCB(cipher, key) {
// Key-dependent variables
//
extendKeyVariables(plaintext, adata);
const { encipher, L } = kv;
const { encipher, mask } = kv;
//
// Nonce-dependent and per-encryption variables
//
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
const bottom = Nonce[15] & 0b111111;
Nonce[15] &= 0b11000000;
const Ktop = encipher(Nonce);
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
// We assume here that tagLength mod 16 == 0.
const paddedNonce = util.concatUint8Array([zeroBlock.subarray(0, 15 - nonce.length), one, nonce]);
const bottom = paddedNonce[15] & 0b111111;
paddedNonce[15] &= 0b11000000;
const kTop = encipher(paddedNonce);
const stretched = util.concatUint8Array([kTop, xor(kTop.subarray(0, 8), kTop.subarray(1, 9))]);
// Offset_0 = Stretch[1+bottom..128+bottom]
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = zeros(16);
const offset = util.shiftRight(stretched.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = new Uint8Array(16);
const C = new Uint8Array(plaintext.length + tagLength);
const ct = new Uint8Array(plaintext.length + tagLength);
//
// Process any whole blocks
@ -197,9 +186,9 @@ async function OCB(cipher, key) {
let i;
let pos = 0;
for (i = 0; i < m; i++) {
set_xor(offset, L[ntz(i + 1)]);
C.set(set_xor(encipher(xor(offset, plaintext)), offset), pos);
set_xor(checksum, plaintext);
xorMut(offset, mask[ntz(i + 1)]);
ct.set(xorMut(encipher(xor(offset, plaintext)), offset), pos);
xorMut(checksum, plaintext);
plaintext = plaintext.subarray(16);
pos += 16;
@ -209,24 +198,24 @@ async function OCB(cipher, key) {
// Process any final partial block and compute raw tag
//
if (plaintext.length) {
set_xor(offset, L.x);
const Pad = encipher(offset);
C.set(xor(plaintext, Pad), pos);
xorMut(offset, mask.x);
const padding = encipher(offset);
ct.set(xor(plaintext, padding), pos);
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
const xorInput = zeros(16);
// Checksum_* = Checksum_m xor (P_* || 1 || new Uint8Array(127-bitlen(P_*)))
const xorInput = new Uint8Array(16);
xorInput.set(plaintext, 0);
xorInput[plaintext.length] = 0b10000000;
set_xor(checksum, xorInput);
xorMut(checksum, xorInput);
pos += plaintext.length;
}
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), hash(adata));
const tag = xorMut(encipher(xorMut(xorMut(checksum, offset), mask.$)), hash(adata));
//
// Assemble ciphertext
//
C.set(Tag, pos);
return C;
ct.set(tag, pos);
return ct;
},
@ -241,7 +230,7 @@ async function OCB(cipher, key) {
//
// Consider C as a sequence of 128-bit blocks
//
const T = ciphertext.subarray(ciphertext.length - tagLength);
const ctTag = ciphertext.subarray(ciphertext.length - tagLength);
ciphertext = ciphertext.subarray(0, ciphertext.length - tagLength);
const m = ciphertext.length >> 4;
@ -249,22 +238,22 @@ async function OCB(cipher, key) {
// Key-dependent variables
//
extendKeyVariables(ciphertext, adata);
const { encipher, decipher, L } = kv;
const { encipher, decipher, mask } = kv;
//
// Nonce-dependent and per-encryption variables
//
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
const bottom = Nonce[15] & 0b111111;
Nonce[15] &= 0b11000000;
const Ktop = encipher(Nonce);
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
// We assume here that tagLength mod 16 == 0.
const paddedNonce = util.concatUint8Array([zeroBlock.subarray(0, 15 - nonce.length), one, nonce]);
const bottom = paddedNonce[15] & 0b111111;
paddedNonce[15] &= 0b11000000;
const kTop = encipher(paddedNonce);
const stretched = util.concatUint8Array([kTop, xor(kTop.subarray(0, 8), kTop.subarray(1, 9))]);
// Offset_0 = Stretch[1+bottom..128+bottom]
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = zeros(16);
const offset = util.shiftRight(stretched.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = new Uint8Array(16);
const P = new Uint8Array(ciphertext.length);
const pt = new Uint8Array(ciphertext.length);
//
// Process any whole blocks
@ -272,9 +261,9 @@ async function OCB(cipher, key) {
let i;
let pos = 0;
for (i = 0; i < m; i++) {
set_xor(offset, L[ntz(i + 1)]);
P.set(set_xor(decipher(xor(offset, ciphertext)), offset), pos);
set_xor(checksum, P.subarray(pos));
xorMut(offset, mask[ntz(i + 1)]);
pt.set(xorMut(decipher(xor(offset, ciphertext)), offset), pos);
xorMut(checksum, pt.subarray(pos));
ciphertext = ciphertext.subarray(16);
pos += 16;
@ -284,26 +273,26 @@ async function OCB(cipher, key) {
// Process any final partial block and compute raw tag
//
if (ciphertext.length) {
set_xor(offset, L.x);
const Pad = encipher(offset);
P.set(xor(ciphertext, Pad), pos);
xorMut(offset, mask.x);
const padding = encipher(offset);
pt.set(xor(ciphertext, padding), pos);
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
const xorInput = zeros(16);
xorInput.set(P.subarray(pos), 0);
// Checksum_* = Checksum_m xor (P_* || 1 || new Uint8Array(127-bitlen(P_*)))
const xorInput = new Uint8Array(16);
xorInput.set(pt.subarray(pos), 0);
xorInput[ciphertext.length] = 0b10000000;
set_xor(checksum, xorInput);
xorMut(checksum, xorInput);
pos += ciphertext.length;
}
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), hash(adata));
const tag = xorMut(encipher(xorMut(xorMut(checksum, offset), mask.$)), hash(adata));
//
// Check for validity and assemble plaintext
//
if (!util.equalsUint8Array(Tag, T)) {
if (!util.equalsUint8Array(ctTag, tag)) {
throw new Error('Authentication tag mismatch in OCB ciphertext');
}
return P;
return pt;
}
};
}