fpgatools/bit_frames.c

292 lines
8.7 KiB
C

//
// Author: Wolfgang Spraul
//
// This is free and unencumbered software released into the public domain.
// For details see the UNLICENSE file at the root of the source tree.
//
#include "model.h"
#include "bit.h"
#include "parts.h"
#include "control.h"
#define HCLK_BYTES 2
static uint8_t* get_first_minor(struct fpga_bits* bits, int row, int major)
{
int i, num_frames;
num_frames = 0;
for (i = 0; i < major; i++)
num_frames += get_major_minors(XC6SLX9, i);
return &bits->d[(row*FRAMES_PER_ROW + num_frames)*FRAME_SIZE];
}
static int get_bit(struct fpga_bits* bits,
int row, int major, int minor, int bit_i)
{
return frame_get_bit(get_first_minor(bits, row, major)
+ minor*FRAME_SIZE, bit_i);
}
static void set_bit(struct fpga_bits* bits,
int row, int major, int minor, int bit_i)
{
return frame_set_bit(get_first_minor(bits, row, major)
+ minor*FRAME_SIZE, bit_i);
}
static void clear_bit(struct fpga_bits* bits,
int row, int major, int minor, int bit_i)
{
return frame_clear_bit(get_first_minor(bits, row, major)
+ minor*FRAME_SIZE, bit_i);
}
struct bit_pos
{
int row;
int major;
int minor;
int bit_i;
};
static int get_bitp(struct fpga_bits* bits, struct bit_pos* pos)
{
return get_bit(bits, pos->row, pos->major, pos->minor, pos->bit_i);
}
static void set_bitp(struct fpga_bits* bits, struct bit_pos* pos)
{
set_bit(bits, pos->row, pos->major, pos->minor, pos->bit_i);
}
static void clear_bitp(struct fpga_bits* bits, struct bit_pos* pos)
{
clear_bit(bits, pos->row, pos->major, pos->minor, pos->bit_i);
}
static struct bit_pos s_default_bits[] = {
{ 0, 0, 3, 66 },
{ 0, 1, 23, 1034 },
{ 0, 1, 23, 1035 },
{ 0, 1, 23, 1039 },
{ 2, 0, 3, 66 }};
int extract_model(struct fpga_model* model, struct fpga_bits* bits)
{
int i, num_iobs, iob_y, iob_x, iob_idx, dev_idx, row, row_pos, rc;
int x, y, byte_off;
uint32_t* u32_p;
uint8_t* u8_p;
uint64_t u64;
const char* iob_sitename, *lut_str;
struct fpga_device* dev;
for (i = 0; i < sizeof(s_default_bits)/sizeof(s_default_bits[0]); i++) {
if (!get_bitp(bits, &s_default_bits[i]))
FAIL(EINVAL);
clear_bitp(bits, &s_default_bits[i]);
}
// IOBs
num_iobs = get_num_iobs(XC6SLX9);
for (i = 0; i < num_iobs; i++) {
u32_p = (uint32_t*) &bits->d[IOB_DATA_START + i*IOB_ENTRY_LEN];
if (!u32_p[0] && !u32_p[1])
continue;
iob_sitename = get_iob_sitename(XC6SLX9, i);
if (!iob_sitename) {
HERE();
continue;
}
rc = fpga_find_iob(model, iob_sitename, &iob_y, &iob_x, &iob_idx);
if (rc) FAIL(rc);
dev_idx = fpga_dev_idx(model, iob_y, iob_x, DEV_IOB, iob_idx);
if (dev_idx == NO_DEV) FAIL(EINVAL);
dev = FPGA_DEV(model, iob_y, iob_x, dev_idx);
// we only support 2 hardcoded types of IOB right now
// todo: bit 7 goes on when out-net connected?
if ((u32_p[0] & 0xFFFFFF7F) == 0x00000100
&& u32_p[1] == 0x06001100) {
dev->instantiated = 1;
strcpy(dev->u.iob.ostandard, IO_LVCMOS33);
dev->u.iob.drive_strength = 12;
dev->u.iob.O_used = 1;
dev->u.iob.slew = SLEW_SLOW;
dev->u.iob.suspend = SUSP_3STATE;
u32_p[0] = 0;
u32_p[1] = 0;
} else if (u32_p[0] == 0x00000107
&& u32_p[1] == 0x0B002400) {
dev->instantiated = 1;
strcpy(dev->u.iob.istandard, IO_LVCMOS33);
dev->u.iob.bypass_mux = BYPASS_MUX_I;
dev->u.iob.I_mux = IMUX_I;
u32_p[0] = 0;
u32_p[1] = 0;
} else HERE();
}
// logic
for (x = LEFT_SIDE_WIDTH; x < model->x_width-RIGHT_SIDE_WIDTH; x++) {
if (!is_atx(X_FABRIC_LOGIC_COL|X_CENTER_LOGIC_COL, model, x))
continue;
for (y = TOP_IO_TILES; y < model->y_height - BOT_IO_TILES; y++) {
if (!has_device_type(model, y, x, DEV_LOGIC, LOGIC_M))
continue;
row = which_row(y, model);
row_pos = pos_in_row(y, model);
if (row == -1 || row_pos == -1 || row_pos == 8) {
HERE();
continue;
}
if (row_pos > 8) row_pos--;
u8_p = get_first_minor(bits, row, model->x_major[x]);
byte_off = row_pos * 8;
if (row_pos >= 8) byte_off += HCLK_BYTES;
// M device
dev_idx = fpga_dev_idx(model, y, x, DEV_LOGIC, DEV_LOGM);
if (dev_idx == NO_DEV) FAIL(EINVAL);
dev = FPGA_DEV(model, y, x, dev_idx);
// A6_LUT
if (frame_get_u32(u8_p + 24*FRAME_SIZE + byte_off + 4)
|| frame_get_u32(u8_p + 25*FRAME_SIZE + byte_off + 4)) {
u64 = read_lut64(u8_p + 24*FRAME_SIZE, (byte_off+4)*8);
{ int logic_base[6] = {0,1,0,0,1,0};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 1); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGM,
A6_LUT, lut_str, ZTERM);
if (rc) FAIL(rc);
*(uint32_t*)(u8_p+24*FRAME_SIZE+byte_off+4) = 0;
*(uint32_t*)(u8_p+25*FRAME_SIZE+byte_off+4) = 0;
}
}
// B6_LUT
if (frame_get_u32(u8_p + 21*FRAME_SIZE + byte_off + 4)
|| frame_get_u32(u8_p + 22*FRAME_SIZE + byte_off + 4)) {
u64 = read_lut64(u8_p + 21*FRAME_SIZE, (byte_off+4)*8);
{ int logic_base[6] = {1,1,0,1,0,1};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 1); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGM,
B6_LUT, lut_str, ZTERM);
if (rc) FAIL(rc);
*(uint32_t*)(u8_p+21*FRAME_SIZE+byte_off+4) = 0;
*(uint32_t*)(u8_p+22*FRAME_SIZE+byte_off+4) = 0;
}
}
// C6_LUT
if (frame_get_u32(u8_p + 24*FRAME_SIZE + byte_off)
|| frame_get_u32(u8_p + 25*FRAME_SIZE + byte_off)) {
u64 = read_lut64(u8_p + 24*FRAME_SIZE, byte_off*8);
{ int logic_base[6] = {0,1,0,0,1,0};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 1); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGM,
C6_LUT, lut_str, ZTERM);
if (rc) FAIL(rc);
*(uint32_t*)(u8_p+24*FRAME_SIZE+byte_off) = 0;
*(uint32_t*)(u8_p+25*FRAME_SIZE+byte_off) = 0;
}
}
// D6_LUT
if (frame_get_u32(u8_p + 21*FRAME_SIZE + byte_off)
|| frame_get_u32(u8_p + 22*FRAME_SIZE + byte_off)) {
u64 = read_lut64(u8_p + 21*FRAME_SIZE, byte_off*8);
{ int logic_base[6] = {1,1,0,1,0,1};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 1); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGM,
D6_LUT, lut_str, ZTERM);
if (rc) FAIL(rc);
*(uint32_t*)(u8_p+21*FRAME_SIZE+byte_off) = 0;
*(uint32_t*)(u8_p+22*FRAME_SIZE+byte_off) = 0;
}
}
// X device
u64 = frame_get_u64(u8_p + 26*FRAME_SIZE + byte_off);
if ( u64 ) {
// 21, 22, 36 and 37 are actually not default
// and can go off with the FFMUXes or routing
// say D over the FF to DQ etc. (AFFMUX=b37,
// BFFMUX=b36, CFFMUX=b22, DFFMUX=b21).
if (!(u64 & (1ULL<<1) && u64 & (1ULL<<2)
&& u64 & (1ULL<<7) && u64 & (1ULL<<21)
&& u64 & (1ULL<<22) && u64 & (1ULL<<36)
&& u64 & (1ULL<<37) && u64 & (1ULL<<39))) {
HERE();
continue;
}
if (u64 & ~(0x000000B000600086ULL)) {
HERE();
continue;
}
dev_idx = fpga_dev_idx(model, y, x, DEV_LOGIC, DEV_LOGX);
if (dev_idx == NO_DEV) FAIL(EINVAL);
dev = FPGA_DEV(model, y, x, dev_idx);
*(uint64_t*)(u8_p+26*FRAME_SIZE+byte_off) = 0;
// A6_LUT
u64 = read_lut64(u8_p + 27*FRAME_SIZE, (byte_off+4)*8);
{ int logic_base[6] = {1,1,0,1,1,0};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 0); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGX,
A6_LUT, lut_str, ZTERM);
if (rc) FAIL(rc);
*(uint32_t*)(u8_p+27*FRAME_SIZE+byte_off+4) = 0;
*(uint32_t*)(u8_p+28*FRAME_SIZE+byte_off+4) = 0;
}
// B6_LUT
u64 = read_lut64(u8_p + 29*FRAME_SIZE, (byte_off+4)*8);
{ int logic_base[6] = {1,1,0,1,1,0};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 0); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGX,
B6_LUT, lut_str, ZTERM);
*(uint32_t*)(u8_p+29*FRAME_SIZE+byte_off+4) = 0;
*(uint32_t*)(u8_p+30*FRAME_SIZE+byte_off+4) = 0;
}
// C6_LUT
u64 = read_lut64(u8_p + 27*FRAME_SIZE, byte_off*8);
{ int logic_base[6] = {0,1,0,0,0,1};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 0); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGX,
C6_LUT, lut_str, ZTERM);
*(uint32_t*)(u8_p+27*FRAME_SIZE+byte_off) = 0;
*(uint32_t*)(u8_p+28*FRAME_SIZE+byte_off) = 0;
}
// D6_LUT
u64 = read_lut64(u8_p + 29*FRAME_SIZE, byte_off*8);
{ int logic_base[6] = {0,1,0,0,0,1};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 0); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGX,
D6_LUT, lut_str, ZTERM);
*(uint32_t*)(u8_p+29*FRAME_SIZE+byte_off) = 0;
*(uint32_t*)(u8_p+30*FRAME_SIZE+byte_off) = 0;
}
}
}
}
return 0;
fail:
return rc;
}
int write_model(struct fpga_bits* bits, struct fpga_model* model)
{
int i;
for (i = 0; i < sizeof(s_default_bits)/sizeof(s_default_bits[0]); i++)
set_bitp(bits, &s_default_bits[i]);
return 0;
}