fpgatools/control.c

1248 lines
32 KiB
C

//
// Author: Wolfgang Spraul
//
// This is free and unencumbered software released into the public domain.
// For details see the UNLICENSE file at the root of the source tree.
//
#include "model.h"
#include "control.h"
struct iob_site
{
int xy;
const char* name[4]; // left and right only use 2, top and bottom 4
};
static const struct iob_site xc6slx9_iob_top[] =
{
{ 5, {"P144", "P143", "P142", "P141"}},
{ 7, {"P140", "P139", "P138", "P137"}},
{12, {"UNB9", "UNB10", "UNB11", "UNB12"}},
{14, {"UNB13", "UNB14", "UNB15", "UNB16"}},
{19, {"UNB17", "UNB18", "UNB19", "UNB20"}},
{21, {"P134", "P133", "P132", "P131"}},
{25, {"P127", "P126", "P124", "P123"}},
{29, {"UNB29", "UNB30", "UNB31", "UNB32"}},
{31, {"UNB33", "UNB34", "P121", "P120"}},
{36, {"P119", "P118", "P117", "P116"}},
{38, {"P115", "P114", "P112", "P111"}},
};
static const struct iob_site xc6slx9_iob_bottom[] =
{
{ 5, {"P39", "P38", "P40", "P41"}},
{ 7, {"UNB139", "UNB140", "P43", "P44"}},
{12, {"P46", "P45", "P47", "P48"}},
{14, {"UNB131", "UNB132", "UNB130", "UNB129"}},
{19, {"UNB127", "UNB128", "UNB126", "UNB125"}},
{21, {"UNB123", "UNB124", "P50", "P51"}},
{25, {"P56", "P55", "UNB118", "UNB117"}},
{29, {"UNB115", "UNB116", "UNB114", "UNB113"}},
{31, {"P58", "P57", "P59", "P60"}},
{36, {"P62", "P61", "P64", "P65"}},
{38, {"P67", "P66", "P69", "P70"}},
};
static const struct iob_site xc6slx9_iob_left[] =
{
{ 3, {"P1", "P2"}},
{ 5, {"UNB198", "UNB197"}},
{ 7, {"UNB196", "UNB195"}},
{ 9, {"UNB194", "UNB193"}},
{ 11, {"P5", "P6"}},
{ 12, {"P7", "P8"}},
{ 13, {"P9", "P10"}},
{ 14, {"P11", "P12"}},
{ 28, {"UNB184", "UNB183"}},
{ 29, {"UNB182", "UNB181"}},
{ 30, {"UNB180", "UNB179"}},
{ 31, {"UNB178", "UNB177"}},
{ 32, {"P14", "P15"}},
{ 33, {"P16", "P17"}},
{ 37, {"P21", "P22"}},
{ 38, {"P23", "P24"}},
{ 39, {"UNB168", "UNB167"}},
{ 42, {"UNB166", "UNB165"}},
{ 46, {"UNB164", "UNB163"}},
{ 49, {"P26", "P27"}},
{ 52, {"P29", "P30"}},
{ 55, {"UNB158", "UNB157"}},
{ 58, {"UNB156", "UNB155"}},
{ 61, {"UNB154", "UNB153"}},
{ 65, {"UNB152", "UNB151"}},
{ 66, {"UNB150", "UNB149"}},
{ 67, {"P32", "P33"}},
{ 68, {"P34", "P35"}},
};
static const struct iob_site xc6slx9_iob_right[] =
{
{ 4, {"P105", "P104"}},
{ 5, {"UNB47", "UNB48"}},
{ 7, {"UNB49", "UNB50"}},
{ 9, {"UNB51", "UNB52"}},
{ 11, {"P102", "P101"}},
{ 12, {"P100", "P99"}},
{ 13, {"P98", "P97"}},
{ 14, {"UNB59", "UNB60"}},
{ 28, {"UNB61", "UNB62"}},
{ 29, {"UNB63", "UNB64"}},
{ 30, {"UNB65", "UNB66"}},
{ 31, {"UNB67", "UNB68"}},
{ 32, {"P95", "P94"}},
{ 33, {"P93", "P92"}},
{ 37, {"P88", "P87"}},
{ 38, {"P85", "P84"}},
{ 39, {"UNB77", "UNB78"}},
{ 42, {"P83", "P82"}},
{ 46, {"P81", "P80"}},
{ 49, {"P79", "P78"}},
{ 52, {"UNB85", "UNB86"}},
{ 55, {"UNB87", "UNB88"}},
{ 58, {"UNB89", "UNB90"}},
{ 61, {"UNB91", "UNB92"}},
{ 65, {"UNB93", "UNB94"}},
{ 66, {"UNB95", "UNB96"}},
{ 67, {"UNB97", "UNB98"}},
{ 68, {"P75", "P74"}},
};
int fpga_find_iob(struct fpga_model* model, const char* sitename,
int* y, int* x, dev_type_idx_t* idx)
{
int i, j;
for (i = 0; i < sizeof(xc6slx9_iob_top)/sizeof(xc6slx9_iob_top[0]); i++) {
for (j = 0; j < 4; j++) {
if (!strcmp(xc6slx9_iob_top[i].name[j], sitename)) {
*y = TOP_OUTER_ROW;
*x = xc6slx9_iob_top[i].xy;
*idx = j;
return 0;
}
}
}
for (i = 0; i < sizeof(xc6slx9_iob_bottom)/sizeof(xc6slx9_iob_bottom[0]); i++) {
for (j = 0; j < 4; j++) {
if (!strcmp(xc6slx9_iob_bottom[i].name[j], sitename)) {
*y = model->y_height-BOT_OUTER_ROW;
*x = xc6slx9_iob_bottom[i].xy;
*idx = j;
return 0;
}
}
}
for (i = 0; i < sizeof(xc6slx9_iob_left)/sizeof(xc6slx9_iob_left[0]); i++) {
for (j = 0; j < 2; j++) {
if (!strcmp(xc6slx9_iob_left[i].name[j], sitename)) {
*y = xc6slx9_iob_left[i].xy;
*x = LEFT_OUTER_COL;
*idx = j;
return 0;
}
}
}
for (i = 0; i < sizeof(xc6slx9_iob_right)/sizeof(xc6slx9_iob_right[0]); i++) {
for (j = 0; j < 2; j++) {
if (!strcmp(xc6slx9_iob_right[i].name[j], sitename)) {
*y = xc6slx9_iob_right[i].xy;
*x = model->x_width-RIGHT_OUTER_O;
*idx = j;
return 0;
}
}
}
return -1;
}
const char* fpga_iob_sitename(struct fpga_model* model, int y, int x,
dev_type_idx_t idx)
{
int i;
if (y == TOP_OUTER_ROW) {
for (i = 0; i < sizeof(xc6slx9_iob_top)/sizeof(xc6slx9_iob_top[0]); i++) {
if (xc6slx9_iob_right[i].xy == x) {
if (idx < 0 || idx > 3) return 0;
return xc6slx9_iob_top[i].name[idx];
}
}
return 0;
}
if (y == model->y_height-BOT_OUTER_ROW) {
for (i = 0; i < sizeof(xc6slx9_iob_bottom)/sizeof(xc6slx9_iob_bottom[0]); i++) {
if (xc6slx9_iob_bottom[i].xy == x) {
if (idx < 0 || idx > 3) return 0;
return xc6slx9_iob_bottom[i].name[idx];
}
}
return 0;
}
if (x == LEFT_OUTER_COL) {
for (i = 0; i < sizeof(xc6slx9_iob_left)/sizeof(xc6slx9_iob_left[0]); i++) {
if (xc6slx9_iob_left[i].xy == y) {
if (idx < 0 || idx > 1) return 0;
return xc6slx9_iob_left[i].name[idx];
}
}
return 0;
}
if (x == model->x_width-RIGHT_OUTER_O) {
for (i = 0; i < sizeof(xc6slx9_iob_right)/sizeof(xc6slx9_iob_right[0]); i++) {
if (xc6slx9_iob_right[i].xy == y) {
if (idx < 0 || idx > 1) return 0;
return xc6slx9_iob_right[i].name[idx];
}
}
return 0;
}
return 0;
}
static const char* dev_str[] = FPGA_DEV_STR;
const char* fdev_type2str(enum fpgadev_type type)
{
if (type < 0 || type >= sizeof(dev_str)/sizeof(*dev_str))
{ HERE(); return 0; }
return dev_str[type];
}
enum fpgadev_type fdev_str2type(const char* str, int len)
{
int i;
for (i = 0; i < sizeof(dev_str)/sizeof(*dev_str); i++) {
if (dev_str[i]
&& strlen(dev_str[i]) == len
&& !str_cmp(dev_str[i], len, str, len))
return i;
}
return DEV_NONE;
}
struct fpga_device* fdev_p(struct fpga_model* model,
int y, int x, enum fpgadev_type type, dev_type_idx_t type_idx)
{
dev_idx_t dev_idx = fpga_dev_idx(model, y, x, type, type_idx);
if (dev_idx == NO_DEV) { HERE(); return 0; }
return FPGA_DEV(model, y, x, dev_idx);
}
dev_idx_t fpga_dev_idx(struct fpga_model* model,
int y, int x, enum fpgadev_type type, dev_type_idx_t type_idx)
{
struct fpga_tile* tile;
dev_type_idx_t type_count;
dev_idx_t i;
tile = YX_TILE(model, y, x);
type_count = 0;
for (i = 0; i < tile->num_devs; i++) {
if (tile->devs[i].type == type) {
if (type_count == type_idx)
return i;
type_count++;
}
}
return NO_DEV;
}
dev_type_idx_t fdev_typeidx(struct fpga_model* model, int y, int x,
dev_idx_t dev_idx)
{
struct fpga_tile* tile;
dev_type_idx_t type_count, i;
tile = YX_TILE(model, y, x);
type_count = 0;
for (i = 0; i < dev_idx; i++) {
if (tile->devs[i].type == tile->devs[dev_idx].type)
type_count++;
}
return type_count;
}
static const char* iob_pinw_str[] = IOB_PINW_STR;
static const char* logic_pinw_str[] = LOGIC_PINW_STR;
pinw_idx_t fdev_pinw_str2idx(int devtype, const char* str, int len)
{
int i;
if (devtype == DEV_IOB) {
for (i = 0; i < sizeof(iob_pinw_str)/sizeof(*iob_pinw_str); i++) {
if (strlen(iob_pinw_str[i]) == len
&& !str_cmp(iob_pinw_str[i], len, str, len))
return i;
}
HERE();
return PINW_NO_IDX;
}
if (devtype == DEV_LOGIC) {
for (i = 0; i < sizeof(logic_pinw_str)/sizeof(*logic_pinw_str); i++) {
if (strlen(logic_pinw_str[i]) == len
&& !str_cmp(logic_pinw_str[i], len, str, len))
return i;
}
HERE();
return PINW_NO_IDX;
}
HERE();
return PINW_NO_IDX;
}
const char* fdev_pinw_idx2str(int devtype, pinw_idx_t idx)
{
if (devtype == DEV_IOB) {
if (idx < 0 || idx >= sizeof(iob_pinw_str)/sizeof(*iob_pinw_str)) {
HERE();
return 0;
}
return iob_pinw_str[idx];
}
if (devtype == DEV_LOGIC) {
if (idx < 0 || idx >= sizeof(logic_pinw_str)/sizeof(*logic_pinw_str)) {
HERE();
return 0;
}
return logic_pinw_str[idx];
}
HERE();
return 0;
}
static int reset_required_pins(struct fpga_device* dev)
{
int rc;
if (!dev->pinw_req_for_cfg) {
dev->pinw_req_for_cfg = malloc(dev->num_pinw_total
* sizeof(*dev->pinw_req_for_cfg));
if (!dev->pinw_req_for_cfg) FAIL(ENOMEM);
}
dev->pinw_req_total = 0;
dev->pinw_req_in = 0;
return 0;
fail:
return rc;
}
void fdev_print_required_pins(struct fpga_model* model, int y, int x,
int type, int type_idx)
{
struct fpga_device* dev;
int i;
dev = fdev_p(model, y, x, type, type_idx);
if (!dev) { HERE(); return; }
printf("y%02i x%02i %s %i inpin", y, x, fdev_type2str(type), type_idx);
if (!dev->pinw_req_in)
printf(" -\n");
else {
for (i = 0; i < dev->pinw_req_in; i++)
printf(" %s", fdev_pinw_idx2str(type, dev->pinw_req_for_cfg[i]));
printf("\n");
}
printf("y%02i x%02i %s %i outpin", y, x, fdev_type2str(type), type_idx);
if (dev->pinw_req_total <= dev->pinw_req_in)
printf(" -\n");
else {
for (i = dev->pinw_req_in; i < dev->pinw_req_total; i++)
printf(" %s", fdev_pinw_idx2str(type, dev->pinw_req_for_cfg[i]));
printf("\n");
}
}
static void add_req_inpin(struct fpga_device* dev, pinw_idx_t pinw_i)
{
if (dev->pinw_req_total > dev->pinw_req_in) {
memmove(&dev->pinw_req_for_cfg[dev->pinw_req_in+1],
&dev->pinw_req_for_cfg[dev->pinw_req_in],
(dev->pinw_req_total-dev->pinw_req_in)
*sizeof(*dev->pinw_req_for_cfg));
}
dev->pinw_req_for_cfg[dev->pinw_req_in] = pinw_i;
dev->pinw_req_in++;
dev->pinw_req_total++;
}
static void add_req_outpin(struct fpga_device* dev, pinw_idx_t pinw_i)
{
dev->pinw_req_for_cfg[dev->pinw_req_total] = pinw_i;
dev->pinw_req_total++;
}
#define MAX_LUT_LEN 512
int fdev_logic_set_lut(struct fpga_model* model, int y, int x, int type_idx,
int which_lut, const char* lut_str, int lut_len)
{
struct fpga_device* dev;
char** luts;
int rc;
dev = fdev_p(model, y, x, DEV_LOGIC, type_idx);
if (!dev) FAIL(EINVAL);
rc = reset_required_pins(dev);
if (rc) FAIL(rc);
luts = dev->u.logic.luts;
if (!luts[which_lut]) {
luts[which_lut] = malloc(MAX_LUT_LEN);
if (!luts[which_lut]) {
OUT_OF_MEM();
return -1;
}
}
if (lut_len == ZTERM) lut_len = strlen(lut_str);
memcpy(luts[which_lut], lut_str, lut_len);
luts[which_lut][lut_len] = 0;
switch (which_lut) {
case A5_LUT:
case A6_LUT:
dev->u.logic.A_used = 1;
break;
case B5_LUT:
case B6_LUT:
dev->u.logic.B_used = 1;
break;
case C5_LUT:
case C6_LUT:
dev->u.logic.C_used = 1;
break;
case D5_LUT:
case D6_LUT:
dev->u.logic.D_used = 1;
break;
default: FAIL(EINVAL);
}
dev->instantiated = 1;
return 0;
fail:
return rc;
}
static void scan_lut_digits(const char* s, int* digits)
{
int i;
for (i = 0; i < 6; i++)
digits[i] = 0;
if (!s) return;
for (i = 0; s[i]; i++) {
if (s[i] >= '1' && s[i] <= '6')
digits[s[i]-'1']++;
}
}
int fdev_set_required_pins(struct fpga_model* model, int y, int x, int type,
int type_idx)
{
struct fpga_device* dev;
int digits[6];
int i, j, rc;
dev = fdev_p(model, y, x, type, type_idx);
if (!dev) FAIL(EINVAL);
rc = reset_required_pins(dev);
if (rc) FAIL(rc);
if (type == DEV_LOGIC) {
if (dev->u.logic.A_used)
add_req_outpin(dev, LOGIC_OUT_A);
if (dev->u.logic.B_used)
add_req_outpin(dev, LOGIC_OUT_B);
if (dev->u.logic.C_used)
add_req_outpin(dev, LOGIC_OUT_C);
if (dev->u.logic.D_used)
add_req_outpin(dev, LOGIC_OUT_D);
for (i = 0; i < sizeof(dev->u.logic.luts)
/sizeof(dev->u.logic.luts[0]); i++) {
if (!dev->u.logic.luts[i]) continue;
scan_lut_digits(dev->u.logic.luts[i], digits);
for (j = 0; j < 6; j++) {
// i/2 because luts order is A5-A6 B5-B6, etc.
if (digits[j])
add_req_inpin(dev,
LOGIC_IN_A1+(i/2)*6+j);
}
}
}
return 0;
fail:
return rc;
}
void fdev_delete(struct fpga_model* model, int y, int x, int type, int type_idx)
{
struct fpga_device* dev;
int i;
dev = fdev_p(model, y, x, type, type_idx);
if (!dev) { HERE(); return; }
if (!dev->instantiated) return;
free(dev->pinw_req_for_cfg);
dev->pinw_req_for_cfg = 0;
dev->pinw_req_total = 0;
dev->pinw_req_in = 0;
if (dev->type == DEV_LOGIC) {
for (i = 0; i < sizeof(dev->u.logic.luts)
/sizeof(dev->u.logic.luts[0]); i++) {
free(dev->u.logic.luts[i]);
dev->u.logic.luts[i] = 0;
}
}
dev->instantiated = 0;
memset(&dev->u, 0, sizeof(dev->u));
}
int fpga_connpt_find(struct fpga_model* model, int y, int x,
str16_t name_i, int* connpt_dests_o, int* num_dests)
{
struct fpga_tile* tile;
int i;
tile = YX_TILE(model, y, x);
for (i = 0; i < tile->num_conn_point_names; i++) {
if (tile->conn_point_names[i*2+1] == name_i)
break;
}
if (i >= tile->num_conn_point_names)
{ HERE(); goto fail; }
if (num_dests) {
*num_dests = (i < tile->num_conn_point_names-1)
? tile->conn_point_names[(i+1)*2]
- tile->conn_point_names[i*2]
: tile->num_conn_point_dests
- tile->conn_point_names[i*2];
}
if (connpt_dests_o)
*connpt_dests_o = tile->conn_point_names[i*2];
return i;
fail:
return NO_CONN;
}
void fpga_conn_dest(struct fpga_model* model, int y, int x,
int connpt_dest_idx, int* dest_y, int* dest_x, str16_t* str_i)
{
struct fpga_tile* tile;
tile = YX_TILE(model, y, x);
if (connpt_dest_idx < 0
|| connpt_dest_idx >= tile->num_conn_point_dests) {
HERE();
return;
}
*dest_x = tile->conn_point_dests[connpt_dest_idx*3];
*dest_y = tile->conn_point_dests[connpt_dest_idx*3+1];
*str_i = tile->conn_point_dests[connpt_dest_idx*3+2];
}
swidx_t fpga_switch_first(struct fpga_model* model, int y, int x,
str16_t name_i, int from_to)
{
struct fpga_tile* tile;
int i, connpt_o;
// Finds the first switch either from or to the name given.
tile = YX_TILE(model, y, x);
for (i = 0; i < tile->num_switches; i++) {
connpt_o = SW_I(tile->switches[i], from_to);
if (tile->conn_point_names[connpt_o*2+1] == name_i)
break;
}
return (i >= tile->num_switches) ? NO_SWITCH : i;
}
static swidx_t fpga_switch_search(struct fpga_model* model, int y, int x,
swidx_t last, swidx_t search_beg, int from_to)
{
struct fpga_tile* tile;
int connpt_o, name_i, i;
tile = YX_TILE(model, y, x);
connpt_o = SW_I(tile->switches[last], from_to);
name_i = tile->conn_point_names[connpt_o*2+1];
for (i = search_beg; i < tile->num_switches; i++) {
connpt_o = SW_I(tile->switches[i], from_to);
if (tile->conn_point_names[connpt_o*2+1] == name_i)
break;
}
return (i >= tile->num_switches) ? NO_SWITCH : i;
}
swidx_t fpga_switch_next(struct fpga_model* model, int y, int x,
swidx_t last, int from_to)
{
return fpga_switch_search(model, y, x, last, last+1, from_to);
}
swidx_t fpga_switch_backtofirst(struct fpga_model* model, int y, int x,
swidx_t last, int from_to)
{
return fpga_switch_search(model, y, x, last, /*search_beg*/ 0, from_to);
}
int fpga_switch_same_fromto(struct fpga_model* model, int y, int x,
swidx_t sw, int from_to, swidx_t* same_sw, int *same_len)
{
swidx_t cur_sw;
int max_len, rc;
max_len = *same_len;
*same_len = 0;
if (max_len < 1) FAIL(EINVAL);
cur_sw = fpga_switch_search(model, y, x, sw, /*search_beg*/ 0, from_to);
// We should at least fine sw itself, if not something is wrong...
if (cur_sw == NO_SWITCH) FAIL(EINVAL);
same_sw[(*same_len)++] = cur_sw;
while ((cur_sw = fpga_switch_search(model, y, x, sw, cur_sw+1, from_to)) != NO_SWITCH) {
same_sw[(*same_len)++] = cur_sw;
if ((*same_len) >= max_len) FAIL(EINVAL);
}
return 0;
fail:
return rc;
}
swidx_t fpga_switch_lookup(struct fpga_model* model, int y, int x,
str16_t from_str_i, str16_t to_str_i)
{
int from_connpt_o, to_connpt_o, i;
struct fpga_tile* tile;
from_connpt_o = fpga_connpt_find(model, y, x, from_str_i,
/*dests_o*/ 0, /*num_dests*/ 0);
to_connpt_o = fpga_connpt_find(model, y, x, to_str_i,
/*dests_o*/ 0, /*num_dests*/ 0);
if (from_connpt_o == NO_CONN || to_connpt_o == NO_CONN)
return NO_SWITCH;
tile = YX_TILE(model, y, x);
for (i = 0; i < tile->num_switches; i++) {
if (SW_FROM_I(tile->switches[i]) == from_connpt_o
&& SW_TO_I(tile->switches[i]) == to_connpt_o)
return i;
}
return NO_SWITCH;
}
#define NUM_CONNPT_BUFS 64
#define CONNPT_BUF_SIZE 128
static const char* connpt_str(struct fpga_model* model, int y, int x, int connpt_o)
{
// We have a little local ringbuffer to make passing
// around pointers with unknown lifetime and possible
// overlap with writing functions more stable.
static char switch_get_buf[NUM_CONNPT_BUFS][CONNPT_BUF_SIZE];
static int last_buf = 0;
const char* hash_str;
int str_i;
str_i = YX_TILE(model, y, x)->conn_point_names[connpt_o*2+1];
hash_str = strarray_lookup(&model->str, str_i);
if (!hash_str || (strlen(hash_str) >= CONNPT_BUF_SIZE)) {
HERE();
return 0;
}
last_buf = (last_buf+1)%NUM_CONNPT_BUFS;
return strcpy(switch_get_buf[last_buf], hash_str);
}
const char* fpga_switch_str(struct fpga_model* model, int y, int x,
swidx_t swidx, int from_to)
{
uint32_t sw = YX_TILE(model, y, x)->switches[swidx];
return connpt_str(model, y, x, SW_I(sw, from_to));
}
str16_t fpga_switch_str_i(struct fpga_model* model, int y, int x,
swidx_t swidx, int from_to)
{
struct fpga_tile* tile;
uint32_t sw;
int connpt_o;
tile = YX_TILE(model, y, x);
sw = tile->switches[swidx];
connpt_o = SW_I(sw, from_to);
return tile->conn_point_names[connpt_o*2+1];
}
const char* fpga_switch_print(struct fpga_model* model, int y, int x,
swidx_t swidx)
{
enum { NUM_BUFS = 16, BUF_SIZE = 128 };
static char buf[NUM_BUFS][BUF_SIZE];
static int last_buf = 0;
uint32_t sw;
sw = YX_TILE(model, y, x)->switches[swidx];
last_buf = (last_buf+1)%NUM_BUFS;
snprintf(buf[last_buf], sizeof(*buf), "%s %s %s",
connpt_str(model, y, x, SW_FROM_I(sw)),
sw & SWITCH_BIDIRECTIONAL ? "<->" : "->",
connpt_str(model, y, x, SW_TO_I(sw)));
return buf[last_buf];
}
int fpga_switch_is_bidir(struct fpga_model* model, int y, int x,
swidx_t swidx)
{
return (YX_TILE(model, y, x)->switches[swidx] & SWITCH_BIDIRECTIONAL) != 0;
}
int fpga_switch_is_used(struct fpga_model* model, int y, int x,
swidx_t swidx)
{
return (YX_TILE(model, y, x)->switches[swidx] & SWITCH_USED) != 0;
}
void fpga_switch_enable(struct fpga_model* model, int y, int x,
swidx_t swidx)
{
YX_TILE(model, y, x)->switches[swidx] |= SWITCH_USED;
}
int fpga_switch_set_enable(struct fpga_model* model, int y, int x,
struct sw_set* set)
{
int i;
for (i = 0; i < set->len; i++)
fpga_switch_enable(model, y, x, set->sw[i]);
return 0;
}
void fpga_switch_disable(struct fpga_model* model, int y, int x,
swidx_t swidx)
{
YX_TILE(model, y, x)->switches[swidx] &= ~SWITCH_USED;
}
#define SW_BUF_SIZE 256
#define NUM_SW_BUFS 64
static const char* fmt_swset_el(struct fpga_model* model, int y, int x,
swidx_t sw, int from_to)
{
static char sw_buf[NUM_SW_BUFS][SW_BUF_SIZE];
static int last_buf = 0;
char midstr[64];
last_buf = (last_buf+1)%NUM_SW_BUFS;
if (fpga_switch_is_bidir(model, y, x, sw))
strcpy(midstr, "<->");
else
strcpy(midstr, "->");
// fmt_swset_el() prints only the destination side of the
// switch (!from_to), because it is the significant one in
// a chain of switches, and if the caller wants the source
// side they can add it outside.
snprintf(sw_buf[last_buf], sizeof(sw_buf[0]), "%s%s%s",
(from_to == SW_FROM) ? ""
: fpga_switch_str(model, y, x, sw, SW_FROM),
midstr,
(from_to == SW_TO) ? ""
: fpga_switch_str(model, y, x, sw, SW_TO));
return sw_buf[last_buf];
}
#define FMT_SWSET_BUF_SIZE 2048
#define FMT_SWSET_NUM_BUFS 8
const char* fmt_swset(struct fpga_model* model, int y, int x,
struct sw_set* set, int from_to)
{
static char buf[FMT_SWSET_NUM_BUFS][FMT_SWSET_BUF_SIZE];
static int last_buf = 0;
int i, o;
last_buf = (last_buf+1)%FMT_SWSET_NUM_BUFS;
o = 0;
if (set->len) {
if (from_to == SW_FROM) {
strcpy(&buf[last_buf][o], fpga_switch_str(model, y, x, set->sw[0], SW_FROM));
o += strlen(&buf[last_buf][o]);
for (i = 0; i < set->len; i++) {
buf[last_buf][o++] = ' ';
strcpy(&buf[last_buf][o],
fmt_swset_el(model, y, x, set->sw[i], SW_FROM));
o += strlen(&buf[last_buf][o]);
}
} else { // SW_TO
for (i = set->len-1; i >= 0; i--) {
if (i < set->len-1) buf[last_buf][o++] = ' ';
strcpy(&buf[last_buf][o],
fmt_swset_el(model, y, x, set->sw[i], SW_TO));
o += strlen(&buf[last_buf][o]);
}
buf[last_buf][o++] = ' ';
strcpy(&buf[last_buf][o], fpga_switch_str(model, y, x, set->sw[0], SW_TO));
o += strlen(&buf[last_buf][o]);
}
}
buf[last_buf][o] = 0;
return buf[last_buf];
}
int fpga_switch_chain(struct sw_chain* chain)
{
swidx_t idx;
struct fpga_tile* tile;
int child_from_to, i;
if (chain->start_switch != STRIDX_NO_ENTRY) {
idx = fpga_switch_first(chain->model, chain->y, chain->x,
chain->start_switch, chain->from_to);
chain->start_switch = STRIDX_NO_ENTRY;
if (idx == NO_SWITCH) {
HERE(); // unusual and is probably some internal error
chain->set.len = 0;
return NO_SWITCH;
}
chain->set.sw[0] = idx;
chain->set.len = 1;
// at every level, the first round returns all members
// at that level, then the second round tries to go
// one level down for each member. This sorts the
// returned switches in a nice way.
chain->first_round = 1;
chain->prior_parents = 0;
chain->num_prior_parents = 0;
return 0;
}
if (!chain->set.len) {
HERE(); goto internal_error;
}
if (chain->first_round) {
// first go through all members at present level
idx = fpga_switch_next(chain->model, chain->y, chain->x,
chain->set.sw[chain->set.len-1], chain->from_to);
if (idx != NO_SWITCH) {
chain->set.sw[chain->set.len-1] = idx;
return 0;
}
// if there are no more, initiate the second round
// looking for children
chain->first_round = 0;
idx = fpga_switch_backtofirst(chain->model, chain->y, chain->x,
chain->set.sw[chain->set.len-1], chain->from_to);
if (idx == NO_SWITCH) {
HERE(); goto internal_error;
}
chain->set.sw[chain->set.len-1] = idx;
}
// look for children
tile = YX_TILE(chain->model, chain->y, chain->x);
while (1) {
idx = fpga_switch_first(chain->model, chain->y, chain->x,
fpga_switch_str_i(chain->model, chain->y, chain->x,
chain->set.sw[chain->set.len-1], !chain->from_to),
chain->from_to);
child_from_to = SW_I(tile->switches[chain->set.sw[chain->set.len-1]],
!chain->from_to);
if (idx != NO_SWITCH) {
// If we have the same from-switch already among the
// parents, don't fall into endless recursion...
for (i = 0; i < chain->set.len; i++) {
if (SW_I(tile->switches[chain->set.sw[i]], chain->from_to)
== child_from_to)
break;
}
if (i >= chain->set.len) {
if (chain->set.len >= MAX_SW_DEPTH) {
HERE(); goto internal_error;
}
if (chain->max_chain_size < 1
|| chain->set.len < chain->max_chain_size) {
// back to first round at new level
chain->first_round = 1;
chain->set.sw[chain->set.len] = idx;
chain->set.len++;
return 0;
}
}
}
while (1) {
chain->set.sw[chain->set.len-1] = fpga_switch_next(
chain->model, chain->y, chain->x,
chain->set.sw[chain->set.len-1], chain->from_to);
if (chain->set.sw[chain->set.len-1] != NO_SWITCH)
break;
if (chain->set.len <= 1) {
chain->set.len = 0;
return NO_SWITCH;
}
chain->set.len--;
}
}
internal_error:
chain->set.len = 0;
return NO_SWITCH;
}
int fpga_switch_chains(struct sw_chain* chain, int max_sets,
struct sw_set* sets, int* num_sets)
{
*num_sets = 0;
while (*num_sets < max_sets
&& fpga_switch_chain(chain) != NO_CONN) {
sets[*num_sets] = chain->set;
}
return 0;
}
int fpga_switch_conns(struct sw_conns* conns)
{
str16_t end_of_chain_str;
if (conns->start_switch != STRIDX_NO_ENTRY) {
conns->chain.model = conns->model;
conns->chain.y = conns->y;
conns->chain.x = conns->x;
conns->chain.start_switch = conns->start_switch;
conns->chain.from_to = conns->from_to;
conns->chain.max_chain_size = conns->max_switch_depth;
conns->start_switch = STRIDX_NO_ENTRY;
conns->num_dests = 0;
conns->dest_i = 0;
}
else if (!conns->chain.set.len) { HERE(); goto internal_error; }
while (conns->dest_i >= conns->num_dests) {
fpga_switch_chain(&conns->chain);
if (conns->chain.set.len == 0)
return NO_CONN;
end_of_chain_str = fpga_switch_str_i(conns->model,
conns->y, conns->x,
conns->chain.set.sw[conns->chain.set.len-1],
!conns->from_to);
if (end_of_chain_str == STRIDX_NO_ENTRY)
{ HERE(); goto internal_error; }
conns->dest_i = 0;
fpga_connpt_find(conns->model, conns->y, conns->x,
end_of_chain_str, &conns->connpt_dest_start,
&conns->num_dests);
if (conns->num_dests)
break;
}
fpga_conn_dest(conns->model, conns->y, conns->x,
conns->connpt_dest_start + conns->dest_i,
&conns->dest_y, &conns->dest_x, &conns->dest_str_i);
if (conns->dest_str_i == STRIDX_NO_ENTRY)
{ HERE(); goto internal_error; }
conns->dest_i++;
return 0;
internal_error:
conns->chain.set.len = 0;
return NO_CONN;
}
void printf_swchain(struct fpga_model* model, int y, int x,
str16_t sw, int from_to, int max_depth)
{
struct sw_chain chain =
{ .model = model, .y = y, .x = x, .start_switch = sw,
.from_to = from_to, .max_chain_size = max_depth};
while (fpga_switch_chain(&chain) != NO_CONN) {
printf("sw %s\n", fmt_swset(model, y, x,
&chain.set, from_to));
}
}
void printf_swconns(struct fpga_model* model, int y, int x,
str16_t sw, int from_to, int max_depth)
{
struct sw_conns conns =
{ .model = model, .y = y, .x = x, .start_switch = sw,
.from_to = from_to, .max_switch_depth = max_depth };
while (fpga_switch_conns(&conns) != NO_CONN) {
printf("sw %s conn y%02i x%02i %s\n", fmt_swset(model, y, x,
&conns.chain.set, from_to),
conns.dest_y, conns.dest_x,
strarray_lookup(&model->str, conns.dest_str_i));
}
}
int fpga_switch_to_yx(struct switch_to_yx* p)
{
struct sw_conns conns = {
.model = p->model, .y = p->y, .x = p->x,
.start_switch = p->start_switch, .from_to = p->from_to,
.max_switch_depth =
(p->flags & SWTO_YX_MAX_SWITCH_DEPTH)
? p->max_switch_depth : MAX_SW_DEPTH };
struct sw_set best_set;
int best_y, best_x, best_distance, distance;
int best_num_dests;
str16_t best_connpt;
best_y = -1;
while (fpga_switch_conns(&conns) != NO_CONN) {
if (is_atyx(p->yx_req, p->model, conns.dest_y, conns.dest_x)) {
if (p->flags & SWTO_YX_TARGET_CONNPT
&& conns.dest_str_i != p->target_connpt)
continue;
if (best_y != -1) {
distance = abs(conns.dest_y-p->y)
+abs(conns.dest_x-p->x);
if (distance > best_distance)
continue;
else if (conns.num_dests > best_num_dests)
continue;
else if (conns.chain.set.len > best_set.len)
continue;
}
best_set = conns.chain.set;
best_y = conns.dest_y;
best_x = conns.dest_x;
best_num_dests = conns.num_dests;
best_connpt = conns.dest_str_i;
best_distance = abs(conns.dest_y-p->y)
+abs(conns.dest_x-p->x);
if (!p->flags & SWTO_YX_CLOSEST)
break;
}
}
if (best_y == -1)
p->set.len = 0;
else {
p->set = best_set;
p->dest_y = best_y;
p->dest_x = best_x;
p->dest_connpt = best_connpt;
}
return 0;
}
void printf_switch_to_result(struct switch_to_yx* p)
{
printf("switch_to_yx() from y%02i x%02i connpt %s (%s)\n",
p->y, p->x, strarray_lookup(&p->model->str, p->start_switch),
p->from_to == SW_FROM ? "SW_FROM" : "SW_TO");
printf(" %s y%02i x%02i %s via %s\n",
p->from_to == SW_FROM ? "to" : "from",
p->dest_y, p->dest_x,
strarray_lookup(&p->model->str, p->dest_connpt),
fmt_swset(p->model, p->y, p->x, &p->set, p->from_to));
}
#define NET_ALLOC_INCREMENT 64
static int fpga_net_useidx(struct fpga_model* model, net_idx_t new_idx)
{
void* new_ptr;
int new_array_size, rc;
if (new_idx <= NO_NET) FAIL(EINVAL);
if (new_idx > model->highest_used_net)
model->highest_used_net = new_idx;
if ((new_idx-1) < model->nets_array_size)
return 0;
new_array_size = ((new_idx-1)/NET_ALLOC_INCREMENT+1)*NET_ALLOC_INCREMENT;
new_ptr = realloc(model->nets, new_array_size*sizeof(*model->nets));
if (!new_ptr) FAIL(ENOMEM);
// the memset will set the 'len' of each new net to 0
memset(new_ptr + model->nets_array_size*sizeof(*model->nets), 0,
(new_array_size - model->nets_array_size)*sizeof(*model->nets));
model->nets = new_ptr;
model->nets_array_size = new_array_size;
return 0;
fail:
return rc;
}
int fpga_net_new(struct fpga_model* model, net_idx_t* new_idx)
{
int rc;
// highest_used_net is initialized to NO_NET which becomes 1
rc = fpga_net_useidx(model, model->highest_used_net+1);
if (rc) return rc;
*new_idx = model->highest_used_net;
return 0;
}
void fpga_net_delete(struct fpga_model* model, net_idx_t net_idx)
{
struct fpga_net* net;
int i;
net = &model->nets[net_idx-1];
for (i = 0; i < net->len; i++) {
if (net->el[i].idx & NET_IDX_IS_PINW)
continue;
if (!fpga_switch_is_used(model, net->el[i].y, net->el[i].x,
net->el[i].idx))
HERE();
fpga_switch_disable(model, net->el[i].y, net->el[i].x,
net->el[i].idx);
}
model->nets[net_idx-1].len = 0;
if (model->highest_used_net == net_idx)
model->highest_used_net--;
}
int fpga_net_enum(struct fpga_model* model, net_idx_t last, net_idx_t* next)
{
int i;
// last can be NO_NET which becomes 1 = the first net index
for (i = last+1; i <= model->highest_used_net; i++) {
if (model->nets[i-1].len) {
*next = i;
return 0;
}
}
*next = NO_NET;
return 0;
}
struct fpga_net* fpga_net_get(struct fpga_model* model, net_idx_t net_i)
{
if (net_i <= NO_NET
|| net_i > model->highest_used_net) {
fprintf(stderr, "%s:%i net_i %i highest_used %i\n", __FILE__,
__LINE__, net_i, model->highest_used_net);
return 0;
}
return &model->nets[net_i-1];
}
int fpga_net_add_port(struct fpga_model* model, net_idx_t net_i,
int y, int x, dev_idx_t dev_idx, pinw_idx_t pinw_idx)
{
struct fpga_net* net;
int rc;
rc = fpga_net_useidx(model, net_i);
if (rc) FAIL(rc);
net = &model->nets[net_i-1];
if (net->len >= MAX_NET_LEN)
FAIL(EINVAL);
net->el[net->len].y = y;
net->el[net->len].x = x;
net->el[net->len].idx = pinw_idx | NET_IDX_IS_PINW;
net->el[net->len].dev_idx = dev_idx;
net->len++;
return 0;
fail:
return rc;
}
int fpga_net_add_switch(struct fpga_model* model, net_idx_t net_i,
int y, int x, swidx_t one_sw)
{
struct sw_set set;
set.sw[0] = one_sw;
set.len = 1;
return fpga_net_add_switches(model, net_i, y, x, &set);
}
int fpga_net_add_switches(struct fpga_model* model, net_idx_t net_i,
int y, int x, const struct sw_set* set)
{
struct fpga_net* net;
int i, rc;
rc = fpga_net_useidx(model, net_i);
if (rc) FAIL(rc);
net = &model->nets[net_i-1];
if (net->len+set->len > MAX_NET_LEN)
FAIL(EINVAL);
for (i = 0; i < set->len; i++) {
net->el[net->len].y = y;
net->el[net->len].x = x;
if (OUT_OF_U16(set->sw[i])) FAIL(EINVAL);
if (fpga_switch_is_used(model, y, x, set->sw[i]))
HERE();
fpga_switch_enable(model, y, x, set->sw[i]);
net->el[net->len].idx = set->sw[i];
net->len++;
}
return 0;
fail:
return rc;
}
void fpga_net_free_all(struct fpga_model* model)
{
free(model->nets);
model->nets = 0;
model->nets_array_size = 0;
model->highest_used_net = 0;
}
static void fprintf_inout_pin(FILE* f, struct fpga_model* model,
net_idx_t net_i, struct net_el* el)
{
struct fpga_tile* tile;
pinw_idx_t pinw_i;
dev_idx_t dev_idx;
int in_pin;
const char* pin_str;
char buf[1024];
if (!(el->idx & NET_IDX_IS_PINW))
{ HERE(); return; }
tile = YX_TILE(model, el->y, el->x);
dev_idx = el->dev_idx;
if (dev_idx < 0 || dev_idx >= tile->num_devs)
{ HERE(); return; }
pinw_i = el->idx & NET_IDX_MASK;
if (pinw_i < 0 || pinw_i >= tile->devs[dev_idx].num_pinw_total)
{ HERE(); return; }
in_pin = pinw_i < tile->devs[dev_idx].num_pinw_in;
pin_str = fdev_pinw_idx2str(tile->devs[dev_idx].type, pinw_i);
if (!pin_str) { HERE(); return; }
snprintf(buf, sizeof(buf), "net %i %s y%02i x%02i %s %i pin %s\n",
net_i, in_pin ? "in" : "out", el->y, el->x,
fdev_type2str(tile->devs[dev_idx].type),
fdev_typeidx(model, el->y, el->x, dev_idx),
pin_str);
fprintf(f, buf);
}
void fprintf_net(FILE* f, struct fpga_model* model, net_idx_t net_i)
{
struct fpga_net* net;
int i;
net = fpga_net_get(model, net_i);
if (!net) { HERE(); return; }
for (i = 0; i < net->len; i++) {
if (net->el[i].idx & NET_IDX_IS_PINW) {
fprintf_inout_pin(f, model, net_i, &net->el[i]);
continue;
}
// switch
fprintf(f, "net %i sw y%02i x%02i %s\n",
net_i, net->el[i].y, net->el[i].x,
fpga_switch_print(model, net->el[i].y,
net->el[i].x, net->el[i].idx));
}
}