fpgatools/libs/model_helper.c
2012-09-22 03:03:00 +02:00

1067 lines
31 KiB
C

//
// Author: Wolfgang Spraul
//
// This is free and unencumbered software released into the public domain.
// For details see the UNLICENSE file at the root of the source tree.
//
#include <stdarg.h>
#include "model.h"
#define NUM_PF_BUFS 16
const char* pf(const char* fmt, ...)
{
// safe to call it NUM_PF_BUFStimes in 1 expression,
// such as function params or a net structure
static char pf_buf[NUM_PF_BUFS][128];
static int last_buf = 0;
va_list list;
last_buf = (last_buf+1)%NUM_PF_BUFS;
pf_buf[last_buf][0] = 0;
va_start(list, fmt);
vsnprintf(pf_buf[last_buf], sizeof(pf_buf[0]), fmt, list);
va_end(list);
return pf_buf[last_buf];
}
const char* wpref(struct fpga_model* model, int y, int x, const char* wire_name)
{
static char buf[8][128];
static int last_buf = 0;
char* prefix;
if (is_aty(Y_CHIP_HORIZ_REGS, model, y)) {
prefix = is_atx(X_CENTER_REGS_COL, model, x+3)
? "REGC_INT_" : "REGH_";
} else if (is_aty(Y_ROW_HORIZ_AXSYMM, model, y))
prefix = "HCLK_";
else if (is_aty(Y_INNER_TOP, model, y))
prefix = "IOI_TTERM_";
else if (is_aty(Y_INNER_BOTTOM, model, y))
prefix = "IOI_BTERM_";
else
prefix = "";
last_buf = (last_buf+1)%8;
buf[last_buf][0] = 0;
strcpy(buf[last_buf], prefix);
strcat(buf[last_buf], wire_name);
return buf[last_buf];
}
int has_connpt(struct fpga_model* model, int y, int x,
const char* name)
{
struct fpga_tile* tile;
uint16_t name_i;
int i;
i = strarray_find(&model->str, name);
if (i == STRIDX_NO_ENTRY)
return 0;
name_i = i;
tile = YX_TILE(model, y, x);
for (i = 0; i < tile->num_conn_point_names; i++) {
if (tile->conn_point_names[i*2+1] == name_i)
return 1;
}
return 0;
}
#define CONN_NAMES_INCREMENT 128
// add_switch() assumes that the new element is appended
// at the end of the array.
static void connpt_names_array_append(struct fpga_tile* tile, int name_i)
{
if (!(tile->num_conn_point_names % CONN_NAMES_INCREMENT)) {
uint16_t* new_ptr = realloc(tile->conn_point_names,
(tile->num_conn_point_names+CONN_NAMES_INCREMENT)*2*sizeof(uint16_t));
if (!new_ptr) EXIT(ENOMEM);
tile->conn_point_names = new_ptr;
}
tile->conn_point_names[tile->num_conn_point_names*2] = tile->num_conn_point_dests;
tile->conn_point_names[tile->num_conn_point_names*2+1] = name_i;
tile->num_conn_point_names++;
}
int add_connpt_name(struct fpga_model* model, int y, int x,
const char* connpt_name, int warn_if_duplicate, uint16_t* name_i,
int* conn_point_o)
{
struct fpga_tile* tile;
uint16_t _name_i;
int rc, i;
tile = &model->tiles[y * model->x_width + x];
rc = strarray_add(&model->str, connpt_name, &i);
if (rc) return rc;
if (i > 0xFFFF) {
fprintf(stderr, "Internal error in %s:%i\n", __FILE__, __LINE__);
return -1;
}
_name_i = i;
if (name_i) *name_i = i;
// Search for an existing connection point under name.
for (i = 0; i < tile->num_conn_point_names; i++) {
if (tile->conn_point_names[i*2+1] == _name_i)
break;
}
if (conn_point_o) *conn_point_o = i;
if (i < tile->num_conn_point_names) {
if (warn_if_duplicate)
fprintf(stderr,
"Duplicate connection point name y%02i x%02u %s\n",
y, x, connpt_name);
return 0;
}
// This is the first connection under name, add name.
connpt_names_array_append(tile, _name_i);
return 0;
}
int has_device(struct fpga_model* model, int y, int x, int dev)
{
struct fpga_tile* tile = YX_TILE(model, y, x);
int i;
for (i = 0; i < tile->num_devs; i++) {
if (tile->devs[i].type == dev)
return 1;
}
return 0;
}
int has_device_type(struct fpga_model* model, int y, int x, int dev, int subtype)
{
struct fpga_tile* tile = YX_TILE(model, y, x);
int i;
for (i = 0; i < tile->num_devs; i++) {
if (tile->devs[i].type == dev) {
switch (dev) {
case DEV_LOGIC:
case DEV_IOB:
if (tile->devs[i].subtype == subtype)
return 1;
break;
default: EXIT(1);
}
}
}
return 0;
}
int add_connpt_2(struct fpga_model* model, int y, int x,
const char* connpt_name, const char* suffix1, const char* suffix2,
int dup_warn)
{
char name_buf[64];
int rc;
snprintf(name_buf, sizeof(name_buf), "%s%s", connpt_name, suffix1);
rc = add_connpt_name(model, y, x, name_buf, dup_warn,
/*name_i*/ 0, /*connpt_o*/ 0);
if (rc) goto xout;
snprintf(name_buf, sizeof(name_buf), "%s%s", connpt_name, suffix2);
rc = add_connpt_name(model, y, x, name_buf, dup_warn,
/*name_i*/ 0, /*connpt_o*/ 0);
if (rc) goto xout;
return 0;
xout:
return rc;
}
#define CONNS_INCREMENT 128
#undef DBG_ADD_CONN_UNI
int add_conn_uni(struct fpga_model* model, int y1, int x1, const char* name1, int y2, int x2, const char* name2)
{
struct fpga_tile* tile;
uint16_t name1_i, name2_i;
uint16_t* new_ptr;
int conn_start, num_conn_point_dests_for_this_wire, rc, j, conn_point_o;
rc = add_connpt_name(model, y1, x1, name1, 0 /* warn_if_duplicate */,
&name1_i, &conn_point_o);
if (rc) goto xout;
rc = strarray_add(&model->str, name2, &j);
if (rc) return rc;
if (j > 0xFFFF) {
fprintf(stderr, "Internal error in %s:%i\n", __FILE__, __LINE__);
return -1;
}
name2_i = j;
tile = &model->tiles[y1 * model->x_width + x1];
conn_start = tile->conn_point_names[conn_point_o*2];
if (conn_point_o+1 >= tile->num_conn_point_names)
num_conn_point_dests_for_this_wire = tile->num_conn_point_dests - conn_start;
else
num_conn_point_dests_for_this_wire = tile->conn_point_names[(conn_point_o+1)*2] - conn_start;
// Is the connection made a second time?
for (j = conn_start; j < conn_start + num_conn_point_dests_for_this_wire; j++) {
if (tile->conn_point_dests[j*3] == x2
&& tile->conn_point_dests[j*3+1] == y2
&& tile->conn_point_dests[j*3+2] == name2_i) {
fprintf(stderr, "Duplicate conn (num_conn_point_dests %i): y%02i x%02i %s - y%02i x%02i %s.\n",
num_conn_point_dests_for_this_wire, y1, x1, name1, y2, x2, name2);
for (j = conn_start; j < conn_start + num_conn_point_dests_for_this_wire; j++) {
fprintf(stderr, "c%i: y%02i x%02i %s -> y%02i x%02i %s\n", j,
y1, x1, name1,
tile->conn_point_dests[j*3+1], tile->conn_point_dests[j*3],
strarray_lookup(&model->str, tile->conn_point_dests[j*3+2]));
}
return 0;
}
}
if (!(tile->num_conn_point_dests % CONNS_INCREMENT)) {
new_ptr = realloc(tile->conn_point_dests, (tile->num_conn_point_dests+CONNS_INCREMENT)*3*sizeof(uint16_t));
if (!new_ptr) {
fprintf(stderr, "Out of memory %s:%i\n", __FILE__, __LINE__);
return 0;
}
tile->conn_point_dests = new_ptr;
}
if (tile->num_conn_point_dests > j)
memmove(&tile->conn_point_dests[(j+1)*3], &tile->conn_point_dests[j*3], (tile->num_conn_point_dests-j)*3*sizeof(uint16_t));
tile->conn_point_dests[j*3] = x2;
tile->conn_point_dests[j*3+1] = y2;
tile->conn_point_dests[j*3+2] = name2_i;
tile->num_conn_point_dests++;
while (conn_point_o+1 < tile->num_conn_point_names) {
tile->conn_point_names[(conn_point_o+1)*2]++;
conn_point_o++;
}
#if DBG_ADD_CONN_UNI
printf("conn_point_dests for y%02i x%02i %s now:\n", y1, x1, name1);
for (j = conn_start; j < conn_start + num_conn_point_dests_for_this_wire+1; j++) {
fprintf(stderr, "c%i: y%02i x%02i %s -> y%02i x%02i %s\n", j, y1, x1, name1,
tile->conn_point_dests[j*3+1], tile->conn_point_dests[j*3],
strarray_lookup(&model->str, tile->conn_point_dests[j*3+2]));
}
#endif
return 0;
xout:
return rc;
}
int add_conn_uni_pref(struct fpga_model* model, int y1, int x1, const char* name1, int y2, int x2, const char* name2)
{
return add_conn_uni(model,
y1, x1, wpref(model, y1, x1, name1),
y2, x2, wpref(model, y2, x2, name2));
}
int add_conn_bi(struct fpga_model* model, int y1, int x1, const char* name1, int y2, int x2, const char* name2)
{
int rc = add_conn_uni(model, y1, x1, name1, y2, x2, name2);
if (rc) return rc;
return add_conn_uni(model, y2, x2, name2, y1, x1, name1);
}
int add_conn_bi_pref(struct fpga_model* model, int y1, int x1, const char* name1, int y2, int x2, const char* name2)
{
return add_conn_bi(model,
y1, x1, wpref(model, y1, x1, name1),
y2, x2, wpref(model, y2, x2, name2));
}
int add_conn_range(struct fpga_model* model, add_conn_f add_conn_func, int y1, int x1, const char* name1, int start1, int last1, int y2, int x2, const char* name2, int start2)
{
char buf1[128], buf2[128];
int rc, i;
if (last1 <= start1)
return (*add_conn_func)(model, y1, x1, name1, y2, x2, name2);
for (i = start1; i <= last1; i++) {
snprintf(buf1, sizeof(buf1), name1, i);
if (start2 & COUNT_DOWN)
snprintf(buf2, sizeof(buf2), name2, (start2 & COUNT_MASK)-(i-start1));
else
snprintf(buf2, sizeof(buf2), name2, (start2 & COUNT_MASK)+(i-start1));
rc = (*add_conn_func)(model, y1, x1, buf1, y2, x2, buf2);
if (rc) return rc;
}
return 0;
}
int add_conn_net(struct fpga_model* model, add_conn_f add_conn_func, struct w_net* net)
{
int i, j, rc;
for (i = 0; net->pts[i].name[0] && i < sizeof(net->pts)/sizeof(net->pts[0]); i++) {
for (j = i+1; net->pts[j].name[0] && j < sizeof(net->pts)/sizeof(net->pts[0]); j++) {
rc = add_conn_range(model, add_conn_func,
net->pts[i].y, net->pts[i].x,
net->pts[i].name,
net->pts[i].start_count,
net->pts[i].start_count + net->last_inc,
net->pts[j].y, net->pts[j].x,
net->pts[j].name,
net->pts[j].start_count);
if (rc) goto xout;
}
}
return 0;
xout:
return rc;
}
#define SWITCH_ALLOC_INCREMENT 256
#define DBG_ALLOW_ADDPOINTS
// Enable CHECK_DUPLICATES when working on the switch architecture,
// but otherwise keep it disabled since it slows down building the
// model a lot.
#undef CHECK_DUPLICATES
int add_switch(struct fpga_model* model, int y, int x, const char* from,
const char* to, int is_bidirectional)
{
struct fpga_tile* tile = YX_TILE(model, y, x);
int rc, i, from_idx, to_idx, from_connpt_o, to_connpt_o;
uint32_t new_switch;
// later this can be strarray_find() and not strarray_add(), but
// then we need all wires and ports to be present first...
#ifdef DBG_ALLOW_ADDPOINTS
rc = strarray_add(&model->str, from, &from_idx);
if (rc) goto xout;
rc = strarray_add(&model->str, to, &to_idx);
if (rc) goto xout;
#else
from_idx = strarray_find(&model->str, from);
to_idx = strarray_find(&model->str, to);
#endif
if (from_idx == STRIDX_NO_ENTRY || to_idx == STRIDX_NO_ENTRY) {
fprintf(stderr, "No string for switch from %s (%i) or %s (%i).\n",
from, from_idx, to, to_idx);
return -1;
}
// It seems searching backwards is a little faster than
// searching forwards. Merging the two loops into one
// made the total slower, presumably due to cache issues.
from_connpt_o = -1;
for (i = tile->num_conn_point_names-1; i >= 0; i--) {
if (tile->conn_point_names[i*2+1] == from_idx) {
from_connpt_o = i;
break;
}
}
to_connpt_o = -1;
for (i = tile->num_conn_point_names-1; i >= 0; i--) {
if (tile->conn_point_names[i*2+1] == to_idx) {
to_connpt_o = i;
break;
}
}
#ifdef DBG_ALLOW_ADDPOINTS
if (from_connpt_o == -1) {
from_connpt_o = tile->num_conn_point_names;
connpt_names_array_append(tile, from_idx);
}
if (to_connpt_o == -1) {
to_connpt_o = tile->num_conn_point_names;
connpt_names_array_append(tile, to_idx);
}
#endif
if (from_connpt_o == -1 || to_connpt_o == -1) {
fprintf(stderr, "No conn point for switch from %s (%i/%i) or %s (%i/%i).\n",
from, from_idx, from_connpt_o, to, to_idx, to_connpt_o);
return -1;
}
if (from_connpt_o > SWITCH_MAX_CONNPT_O
|| to_connpt_o > SWITCH_MAX_CONNPT_O) {
fprintf(stderr, "Internal error in %s:%i (from_o %i to_o %i)\n",
__FILE__, __LINE__, from_connpt_o, to_connpt_o);
return -1;
}
new_switch = (from_connpt_o << 15) | to_connpt_o;
if (is_bidirectional)
new_switch |= SWITCH_BIDIRECTIONAL;
#ifdef CHECK_DUPLICATES
for (i = 0; i < tile->num_switches; i++) {
if ((tile->switches[i] & 0x3FFFFFFF) == (new_switch & 0x3FFFFFFF)) {
fprintf(stderr, "Internal error in %s:%i duplicate switch from %s to %s\n",
__FILE__, __LINE__, from, to);
return -1;
}
}
#endif
if (!(tile->num_switches % SWITCH_ALLOC_INCREMENT)) {
uint32_t* new_ptr = realloc(tile->switches,
(tile->num_switches+SWITCH_ALLOC_INCREMENT)*sizeof(*tile->switches));
if (!new_ptr) {
fprintf(stderr, "Out of memory %s:%i\n", __FILE__, __LINE__);
return -1;
}
tile->switches = new_ptr;
}
tile->switches[tile->num_switches++] = new_switch;
return 0;
xout:
return rc;
}
int add_switch_set(struct fpga_model* model, int y, int x, const char* prefix,
const char** pairs, int suffix_inc)
{
int i, j, from_len, to_len, rc;
char from[64], to[64];
for (i = 0; pairs[i*2][0]; i++) {
snprintf(from, sizeof(from), "%s%s", prefix, pairs[i*2]);
snprintf(to, sizeof(to), "%s%s", prefix, pairs[i*2+1]);
if (!suffix_inc) {
rc = add_switch(model, y, x, from, to,
0 /* bidir */);
if (rc) goto xout;
} else {
from_len = strlen(from);
to_len = strlen(to);
for (j = 0; j <= suffix_inc; j++) {
snprintf(&from[from_len], sizeof(from)-from_len, "%i", j);
snprintf(&to[to_len], sizeof(to)-to_len, "%i", j);
rc = add_switch(model, y, x, from, to,
0 /* bidir */);
if (rc) goto xout;
}
}
}
return 0;
xout:
return rc;
}
int replicate_switches_and_names(struct fpga_model* model,
int y_from, int x_from, int y_to, int x_to)
{
struct fpga_tile* from_tile, *to_tile;
int rc;
from_tile = YX_TILE(model, y_from, x_from);
to_tile = YX_TILE(model, y_to, x_to);
if (to_tile->num_conn_point_names
|| to_tile->num_conn_point_dests
|| to_tile->num_switches
|| from_tile->num_conn_point_dests
|| !from_tile->num_conn_point_names
|| !from_tile->num_switches) FAIL(EINVAL);
to_tile->conn_point_names = malloc(((from_tile->num_conn_point_names/CONN_NAMES_INCREMENT)+1)*CONN_NAMES_INCREMENT*2*sizeof(uint16_t));
if (!to_tile->conn_point_names) EXIT(ENOMEM);
memcpy(to_tile->conn_point_names, from_tile->conn_point_names, from_tile->num_conn_point_names*2*sizeof(uint16_t));
to_tile->num_conn_point_names = from_tile->num_conn_point_names;
to_tile->switches = malloc(((from_tile->num_switches/SWITCH_ALLOC_INCREMENT)+1)*SWITCH_ALLOC_INCREMENT*sizeof(*from_tile->switches));
if (!to_tile->switches) EXIT(ENOMEM);
memcpy(to_tile->switches, from_tile->switches, from_tile->num_switches*sizeof(*from_tile->switches));
to_tile->num_switches = from_tile->num_switches;
return 0;
fail:
return rc;
}
void seed_strx(struct fpga_model* model, struct seed_data* data)
{
int x, i;
for (x = 0; x < model->x_width; x++) {
model->tmp_str[x] = 0;
for (i = 0; data[i].x_flags; i++) {
if (is_atx(data[i].x_flags, model, x))
model->tmp_str[x] = data[i].str;
}
}
}
char next_non_whitespace(const char* s)
{
int i;
for (i = 0; s[i] == ' '; i++);
return s[i];
}
char last_major(const char* str, int cur_o)
{
for (; cur_o; cur_o--) {
if (str[cur_o-1] >= 'A' && str[cur_o-1] <= 'Z')
return str[cur_o-1];
}
return 0;
}
int is_aty(int check, struct fpga_model* model, int y)
{
if (y < 0) return 0;
if (check & Y_INNER_TOP && y == TOP_INNER_ROW) return 1;
if (check & Y_INNER_BOTTOM && y == model->y_height-BOT_INNER_ROW) return 1;
if (check & Y_CHIP_HORIZ_REGS && y == model->center_y) return 1;
if (check & (Y_ROW_HORIZ_AXSYMM|Y_BOTTOM_OF_ROW)) {
int row_pos;
is_in_row(model, y, 0 /* row_num */, &row_pos);
if (check & Y_ROW_HORIZ_AXSYMM && row_pos == 8) return 1;
if (check & Y_BOTTOM_OF_ROW && row_pos == 16) return 1;
}
if (check & Y_LEFT_WIRED && model->tiles[y*model->x_width].flags & TF_WIRED) return 1;
if (check & Y_RIGHT_WIRED && model->tiles[y*model->x_width + model->x_width-RIGHT_OUTER_O].flags & TF_WIRED) return 1;
if (check & Y_TOPBOT_IO_RANGE
&& ((y > TOP_INNER_ROW && y <= TOP_INNER_ROW + TOP_IO_TILES)
|| (y >= model->y_height - BOT_INNER_ROW - BOT_IO_TILES && y < model->y_height - BOT_INNER_ROW))) return 1;
if (check & Y_TOP_OUTER_IO && y == TOP_OUTER_IO) return 1;
if (check & Y_TOP_INNER_IO && y == TOP_INNER_IO) return 1;
if (check & Y_BOT_INNER_IO && y == model->y_height-BOT_INNER_IO) return 1;
if (check & Y_BOT_OUTER_IO && y == model->y_height-BOT_OUTER_IO) return 1;
return 0;
}
int is_atx(int check, struct fpga_model* model, int x)
{
if (x < 0) return 0;
if (check & X_OUTER_LEFT && !x) return 1;
if (check & X_INNER_LEFT && x == 1) return 1;
if (check & X_INNER_RIGHT && x == model->x_width-2) return 1;
if (check & X_OUTER_RIGHT && x == model->x_width-1) return 1;
if (check & X_ROUTING_NO_IO
&& model->tiles[x].flags & TF_ROUTING_NO_IO) return 1;
if (check & X_FABRIC_LOGIC_XM_ROUTING_COL
&& model->tiles[x].flags & TF_FABRIC_ROUTING_COL
&& model->tiles[x+1].flags & TF_FABRIC_LOGIC_XM_COL) return 1;
if (check & X_FABRIC_LOGIC_XL_ROUTING_COL
&& model->tiles[x].flags & TF_FABRIC_ROUTING_COL
&& model->tiles[x+1].flags & TF_FABRIC_LOGIC_XL_COL) return 1;
if (check & X_FABRIC_LOGIC_XM_COL
&& model->tiles[x].flags & TF_FABRIC_LOGIC_XM_COL) return 1;
if (check & X_FABRIC_LOGIC_XL_COL
&& model->tiles[x].flags & TF_FABRIC_LOGIC_XL_COL) return 1;
if (check & X_FABRIC_BRAM_ROUTING_COL
&& model->tiles[x].flags & TF_FABRIC_ROUTING_COL
&& model->tiles[x+1].flags & TF_FABRIC_BRAM_VIA_COL
&& model->tiles[x+2].flags & TF_FABRIC_BRAM_COL) return 1;
if (check & X_FABRIC_MACC_ROUTING_COL
&& model->tiles[x].flags & TF_FABRIC_ROUTING_COL
&& model->tiles[x+1].flags & TF_FABRIC_MACC_VIA_COL
&& model->tiles[x+2].flags & TF_FABRIC_MACC_COL) return 1;
if (check & X_FABRIC_BRAM_VIA_COL && model->tiles[x].flags & TF_FABRIC_BRAM_VIA_COL) return 1;
if (check & X_FABRIC_MACC_VIA_COL && model->tiles[x].flags & TF_FABRIC_MACC_VIA_COL) return 1;
if (check & X_FABRIC_BRAM_COL && model->tiles[x].flags & TF_FABRIC_BRAM_COL) return 1;
if (check & X_FABRIC_MACC_COL && model->tiles[x].flags & TF_FABRIC_MACC_COL) return 1;
if (check & X_CENTER_ROUTING_COL && x == model->center_x-3) return 1;
if (check & X_CENTER_LOGIC_COL && x == model->center_x-2) return 1;
if (check & X_CENTER_CMTPLL_COL && x == model->center_x-1) return 1;
if (check & X_CENTER_REGS_COL && x == model->center_x) return 1;
if (check & X_LEFT_IO_ROUTING_COL && x == LEFT_IO_ROUTING) return 1;
if (check & X_LEFT_IO_DEVS_COL && x == LEFT_IO_DEVS) return 1;
if (check & X_RIGHT_IO_ROUTING_COL
&& x == model->x_width-RIGHT_IO_ROUTING_O) return 1;
if (check & X_RIGHT_IO_DEVS_COL
&& x == model->x_width-RIGHT_IO_DEVS_O) return 1;
if (check & X_LEFT_SIDE && x < model->center_x) return 1;
if (check & X_LEFT_MCB && x == LEFT_MCB_COL) return 1;
if (check & X_RIGHT_MCB && x == model->x_width-RIGHT_MCB_O) return 1;
return 0;
}
int is_atyx(int check, struct fpga_model* model, int y, int x)
{
struct fpga_tile* tile;
if (y < 0 || x < 0) return 0;
if (check & YX_ROUTING_TILE
&& (model->tiles[x].flags & TF_FABRIC_ROUTING_COL
|| x == LEFT_IO_ROUTING || x == model->x_width-5
|| x == model->center_x-3)) {
int row_pos;
is_in_row(model, y, 0 /* row_num */, &row_pos);
if (row_pos >= 0 && row_pos != 8) return 1;
}
tile = YX_TILE(model, y, x);
if (check & YX_IO_ROUTING
&& (tile->type == IO_ROUTING || tile->type == ROUTING_IO_L)) return 1;
if (check & YX_ROUTING_TO_FABLOGIC
&& model->tiles[x].flags & TF_FABRIC_ROUTING_COL
&& has_device(model, y, x+1, DEV_LOGIC)) return 1;
if (check & YX_DEV_ILOGIC && has_device(model, y, x, DEV_ILOGIC)) return 1;
if (check & YX_DEV_OLOGIC && has_device(model, y, x, DEV_OLOGIC)) return 1;
if (check & YX_DEV_LOGIC && has_device(model, y, x, DEV_LOGIC)) return 1;
if (check & YX_DEV_IOB && has_device(model, y, x, DEV_IOB)) return 1;
return 0;
}
void is_in_row(const struct fpga_model* model, int y,
int* row_num, int* row_pos)
{
int dist_to_center;
if (row_num) *row_num = -1;
if (row_pos) *row_pos = -1;
if (y < 2) return;
// normalize y to beginning of rows
y -= 2;
// calculate distance to center and check
// that y is not pointing to the center
dist_to_center = (model->cfg_rows/2)*(8+1/*middle of row*/+8);
if (y == dist_to_center) return;
if (y > dist_to_center) y--;
// check that y is not pointing past the last row
if (y >= model->cfg_rows*(8+1+8)) return;
if (row_num) *row_num = model->cfg_rows-(y/(8+1+8))-1;
if (row_pos) *row_pos = y%(8+1+8);
}
int which_row(int y, struct fpga_model* model)
{
int result;
is_in_row(model, y, &result, 0 /* row_pos */);
return result;
}
int pos_in_row(int y, struct fpga_model* model)
{
int result;
is_in_row(model, y, 0 /* row_num */, &result);
return result;
}
const char* logicin_s(int wire, int routing_io)
{
if (routing_io && ((wire & LWF_WIRE_MASK) == X_A5 || (wire & LWF_WIRE_MASK) == X_B4))
return pf("INT_IOI_LOGICIN_B%i", wire & LWF_WIRE_MASK);
return pf("LOGICIN_B%i", wire & LWF_WIRE_MASK);
}
const char* logicin_str(enum logicin_wire w)
{
switch (w) {
case M_A1:
case X_A1: return "A1";
case M_A2:
case X_A2: return "A2";
case M_A3:
case X_A3: return "A3";
case M_A4:
case X_A4: return "A4";
case M_A5:
case X_A5: return "A5";
case M_A6:
case X_A6: return "A6";
case M_AX:
case X_AX: return "AX";
case M_B1:
case X_B1: return "B1";
case M_B2:
case X_B2: return "B2";
case M_B3:
case X_B3: return "B3";
case M_B4:
case X_B4: return "B4";
case M_B5:
case X_B5: return "B5";
case M_B6:
case X_B6: return "B6";
case M_BX:
case X_BX: return "BX";
case M_C1:
case X_C1: return "C1";
case M_C2:
case X_C2: return "C2";
case M_C3:
case X_C3: return "C3";
case M_C4:
case X_C4: return "C4";
case M_C5:
case X_C5: return "C5";
case M_C6:
case X_C6: return "C6";
case M_CE:
case X_CE: return "CE";
case M_CX:
case X_CX: return "CX";
case M_D1:
case X_D1: return "D1";
case M_D2:
case X_D2: return "D2";
case M_D3:
case X_D3: return "D3";
case M_D4:
case X_D4: return "D4";
case M_D5:
case X_D5: return "D5";
case M_D6:
case X_D6: return "D6";
case M_DX:
case X_DX: return "DX";
case M_AI: return "AI";
case M_BI: return "BI";
case M_CI: return "CI";
case M_DI: return "DI";
case M_WE: return "WE";
}
EXIT(1);
return 0;
}
const char* logicout_str(enum logicout_wire w)
{
switch (w) {
case X_A:
case M_A: return "A";
case X_AMUX:
case M_AMUX: return "AMUX";
case X_AQ:
case M_AQ: return "AQ";
case X_B:
case M_B: return "B";
case X_BMUX:
case M_BMUX: return "BMUX";
case X_BQ:
case M_BQ: return "BQ";
case X_C:
case M_C: return "C";
case X_CMUX:
case M_CMUX: return "CMUX";
case X_CQ:
case M_CQ: return "CQ";
case X_D:
case M_D: return "D";
case X_DMUX:
case M_DMUX: return "DMUX";
case X_DQ:
case M_DQ: return "DQ";
}
EXIT(1);
return 0;
}
const char* fpga_wire2str(enum extra_wires wire)
{
enum { NUM_BUFS = 8, BUF_SIZE = 64 };
static char buf[NUM_BUFS][BUF_SIZE];
static int last_buf = 0;
switch (wire) {
case GFAN0: return "GFAN0";
case GFAN1: return "GFAN1";
case CLK0: return "CLK0";
case CLK1: return "CLK1";
case SR0: return "SR0";
case SR1: return "SR1";
case GND_WIRE: return "GND_WIRE";
case VCC_WIRE: return "VCC_WIRE";
case FAN_B: return "FAN_B";
case LOGICIN20: return "LOGICIN20";
case LOGICIN21: return "LOGICIN21";
case LOGICIN44: return "LOGICIN44";
case LOGICIN52: return "LOGICIN52";
case LOGICIN_N21: return "LOGICIN_N21";
case LOGICIN_N28: return "LOGICIN_N28";
case LOGICIN_N52: return "LOGICIN_N52";
case LOGICIN_N60: return "LOGICIN_N60";
case LOGICIN_S20: return "LOGICIN_S20";
case LOGICIN_S36: return "LOGICIN_S36";
case LOGICIN_S44: return "LOGICIN_S44";
case LOGICIN_S62: return "LOGICIN_S62";
default: ;
}
last_buf = (last_buf+1)%NUM_BUFS;
buf[last_buf][0] = 0;
if (wire >= GCLK0 && wire <= GCLK15)
snprintf(buf[last_buf], sizeof(buf[0]), "GCLK%i", wire-GCLK0);
else if (wire >= DW && wire <= DW_LAST) {
char beg_end;
int flags;
wire -= DW;
flags = wire & DIR_FLAGS;
wire &= ~DIR_FLAGS;
beg_end = (flags & DIR_BEG) ? 'B' : 'E';
if (flags & DIR_S0 && wire%4 == 0)
snprintf(buf[last_buf], sizeof(buf[0]),
"%s%c_S0", wire_base(wire/4), beg_end);
else if (flags & DIR_N3 && wire%4 == 3)
snprintf(buf[last_buf], sizeof(buf[0]),
"%s%c_N3", wire_base(wire/4), beg_end);
else
snprintf(buf[last_buf], sizeof(buf[0]),
"%s%c%i", wire_base(wire/4), beg_end, wire%4);
} else if (wire >= LW && wire <= LW_LAST) {
wire -= LW;
if ((wire&(~LD1)) >= LI_FIRST && (wire&(~LD1)) <= LI_LAST)
snprintf(buf[last_buf], sizeof(buf[0]), "LOGICIN_B%i", fdev_logic_inbit(wire));
else if ((wire&(~LD1)) >= LO_FIRST && (wire&(~LD1)) <= LO_LAST)
snprintf(buf[last_buf], sizeof(buf[0]), "LOGICOUT%i", fdev_logic_outbit(wire));
else HERE();
} else HERE();
return buf[last_buf];
}
str16_t fpga_wire2str_i(struct fpga_model* model, enum extra_wires wire)
{
return strarray_find(&model->str, fpga_wire2str(wire));
}
enum extra_wires fpga_str2wire(const char* str)
{
const char* _str;
enum wire_type wtype;
int len, num, flags;
_str = str;
if (!strncmp(_str, "INT_IOI_", 8))
_str = &_str[8];
if (!strncmp(_str, "GCLK", 4)) {
len = strlen(_str);
if (!strcmp(&_str[len-4], "_BRK"))
len -= 4;
if (len > 4) {
num = to_i(&_str[4], len-4);
if (num >= 0 && num <= 15)
return GCLK0 + num;
}
}
if (!strncmp(_str, "LOGICIN_B", 9)) {
len = strlen(&_str[9]);
if (len) {
switch (to_i(&_str[9], len)) {
case X_A1: return LW + LI_A1;
case X_A2: return LW + LI_A2;
case X_A3: return LW + LI_A3;
case X_A4: return LW + LI_A4;
case X_A5: return LW + LI_A5;
case X_A6: return LW + LI_A6;
case X_AX: return LW + LI_AX;
case X_B1: return LW + LI_B1;
case X_B2: return LW + LI_B2;
case X_B3: return LW + LI_B3;
case X_B4: return LW + LI_B4;
case X_B5: return LW + LI_B5;
case X_B6: return LW + LI_B6;
case X_BX: return LW + LI_BX;
case X_C1: return LW + LI_C1;
case X_C2: return LW + LI_C2;
case X_C3: return LW + LI_C3;
case X_C4: return LW + LI_C4;
case X_C5: return LW + LI_C5;
case X_C6: return LW + LI_C6;
case X_CE: return LW + LI_CE;
case X_CX: return LW + LI_CX;
case X_D1: return LW + LI_D1;
case X_D2: return LW + LI_D2;
case X_D3: return LW + LI_D3;
case X_D4: return LW + LI_D4;
case X_D5: return LW + LI_D5;
case X_D6: return LW + LI_D6;
case X_DX: return LW + LI_DX;
case M_A1: return LW + (LI_A1|LD1);
case M_A2: return LW + (LI_A2|LD1);
case M_A3: return LW + (LI_A3|LD1);
case M_A4: return LW + (LI_A4|LD1);
case M_A5: return LW + (LI_A5|LD1);
case M_A6: return LW + (LI_A6|LD1);
case M_AX: return LW + (LI_AX|LD1);
case M_AI: return LW + (LI_AI|LD1);
case M_B1: return LW + (LI_B1|LD1);
case M_B2: return LW + (LI_B2|LD1);
case M_B3: return LW + (LI_B3|LD1);
case M_B4: return LW + (LI_B4|LD1);
case M_B5: return LW + (LI_B5|LD1);
case M_B6: return LW + (LI_B6|LD1);
case M_BX: return LW + (LI_BX|LD1);
case M_BI: return LW + (LI_BI|LD1);
case M_C1: return LW + (LI_C1|LD1);
case M_C2: return LW + (LI_C2|LD1);
case M_C3: return LW + (LI_C3|LD1);
case M_C4: return LW + (LI_C4|LD1);
case M_C5: return LW + (LI_C5|LD1);
case M_C6: return LW + (LI_C6|LD1);
case M_CE: return LW + (LI_CE|LD1);
case M_CX: return LW + (LI_CX|LD1);
case M_CI: return LW + (LI_CI|LD1);
case M_D1: return LW + (LI_D1|LD1);
case M_D2: return LW + (LI_D2|LD1);
case M_D3: return LW + (LI_D3|LD1);
case M_D4: return LW + (LI_D4|LD1);
case M_D5: return LW + (LI_D5|LD1);
case M_D6: return LW + (LI_D6|LD1);
case M_DX: return LW + (LI_DX|LD1);
case M_DI: return LW + (LI_DI|LD1);
case M_WE: return LW + (LI_WE|LD1);
}
}
}
if (!strncmp(_str, "LOGICOUT", 8)) {
len = strlen(&_str[8]);
if (len) {
switch (to_i(&_str[8], len)) {
case M_A: return LW + (LO_A|LD1);
case M_AMUX: return LW + (LO_AMUX|LD1);
case M_AQ: return LW + (LO_AQ|LD1);
case M_B: return LW + (LO_B|LD1);
case M_BMUX: return LW + (LO_BMUX|LD1);
case M_BQ: return LW + (LO_BQ|LD1);
case M_C: return LW + (LO_C|LD1);
case M_CMUX: return LW + (LO_CMUX|LD1);
case M_CQ: return LW + (LO_CQ|LD1);
case M_D: return LW + (LO_D|LD1);
case M_DMUX: return LW + (LO_DMUX|LD1);
case M_DQ: return LW + (LO_DQ|LD1);
case X_A: return LW + LO_A;
case X_AMUX: return LW + LO_AMUX;
case X_AQ: return LW + LO_AQ;
case X_B: return LW + LO_B;
case X_BMUX: return LW + LO_BMUX;
case X_BQ: return LW + LO_BQ;
case X_C: return LW + LO_C;
case X_CMUX: return LW + LO_CMUX;
case X_CQ: return LW + LO_CQ;
case X_D: return LW + LO_D;
case X_DMUX: return LW + LO_DMUX;
case X_DQ: return LW + LO_DQ;
}
}
}
if ((wtype = base2wire(_str))) {
flags = 0;
if (_str[3] == 'B')
flags |= DIR_BEG;
if (_str[3] != 'B' && _str[3] != 'E')
HERE();
else {
if (!strcmp(&_str[4], "_S0")) {
num = 0;
flags |= DIR_S0;
} else if (!strcmp(&_str[4], "_N3")) {
num = 3;
flags |= DIR_N3;
} else switch (_str[4]) {
case '0': num = 0; break;
case '1': num = 1; break;
case '2': num = 2; break;
case '3': num = 3; break;
default:
HERE();
num = -1;
break;
}
if (num != -1)
return DW + ((wtype*4 + num)|flags);
}
}
if (!strcmp(_str, "GFAN0")) return GFAN0;
if (!strcmp(_str, "GFAN1")) return GFAN1;
if (!strcmp(_str, "CLK0")) return CLK0;
if (!strcmp(_str, "CLK1")) return CLK1;
if (!strcmp(_str, "SR0")) return SR0;
if (!strcmp(_str, "SR1")) return SR1;
if (!strcmp(_str, "GND_WIRE")) return GND_WIRE;
if (!strcmp(_str, "VCC_WIRE")) return VCC_WIRE;
if (!strcmp(_str, "FAN_B")) return FAN_B;
if (!strncmp(_str, "LOGICIN", 7)) {
if (!strcmp(&_str[7], "20")) return LOGICIN20;
if (!strcmp(&_str[7], "21")) return LOGICIN21;
if (!strcmp(&_str[7], "44")) return LOGICIN44;
if (!strcmp(&_str[7], "52")) return LOGICIN52;
if (!strcmp(&_str[7], "_N21")) return LOGICIN_N21;
if (!strcmp(&_str[7], "_N28")) return LOGICIN_N28;
if (!strcmp(&_str[7], "_N52")) return LOGICIN_N52;
if (!strcmp(&_str[7], "_N60")) return LOGICIN_N60;
if (!strcmp(&_str[7], "_S20")) return LOGICIN_S20;
if (!strcmp(&_str[7], "_S36")) return LOGICIN_S36;
if (!strcmp(&_str[7], "_S44")) return LOGICIN_S44;
if (!strcmp(&_str[7], "_S62")) return LOGICIN_S62;
}
HERE();
return NO_WIRE;
}
int fdev_logic_inbit(pinw_idx_t idx)
{
if (idx & LD1) {
idx &= ~LD1;
if (idx >= LI_A1 && idx <= LI_C6)
return M_A1 + (idx/6)*8+idx%6;
if (idx >= LI_D1 && idx <= LI_D6)
return M_D1 + (idx-LI_D1);
switch (idx) {
case LI_AX: return M_AX;
case LI_BX: return M_BX;
case LI_CE: return M_CE;
case LI_CX: return M_CX;
case LI_DX: return M_DX;
case LI_AI: return M_AI;
case LI_BI: return M_BI;
case LI_CI: return M_CI;
case LI_DI: return M_DI;
case LI_WE: return M_WE;
}
HERE();
return -1;
}
if (idx >= LI_A1 && idx <= LI_C6)
return X_A1 + (idx/6)*7+idx%6;
else if (idx >= LI_D1 && idx <= LI_D6)
return X_D1 + (idx-LI_D1);
else switch (idx) {
case LI_AX: return X_AX;
case LI_BX: return X_BX;
case LI_CE: return X_CE;
case LI_CX: return X_CX;
case LI_DX: return X_DX;
}
HERE();
return -1;
}
int fdev_logic_outbit(pinw_idx_t idx)
{
if (idx & LD1) {
idx &= ~LD1;
switch (idx) {
case LO_A: return M_A;
case LO_AMUX: return M_AMUX;
case LO_AQ: return M_AQ;
case LO_B: return M_B;
case LO_BMUX: return M_BMUX;
case LO_BQ: return M_BQ;
case LO_C: return M_C;
case LO_CMUX: return M_CMUX;
case LO_CQ: return M_CQ;
case LO_D: return M_D;
case LO_DMUX: return M_DMUX;
case LO_DQ: return M_DQ;
}
HERE();
return -1;
}
switch (idx) {
case LO_A: return X_A;
case LO_AMUX: return X_AMUX;
case LO_AQ: return X_AQ;
case LO_B: return X_B;
case LO_BMUX: return X_BMUX;
case LO_BQ: return X_BQ;
case LO_C: return X_C;
case LO_CMUX: return X_CMUX;
case LO_CQ: return X_CQ;
case LO_D: return X_D;
case LO_DMUX: return X_DMUX;
case LO_DQ: return X_DQ;
}
HERE();
return -1;
}