phc-graph/flexible-with-generalized-ctor.hl.rkt

126 lines
4.4 KiB
Racket

#lang type-expander/lang
#|hyper-literate #:♦ #:no-auto-require (dotlambda/unhygienic
. type-expander/lang)
♦chunk[<*>|#
(provide builder-τ
None
Some
Some?
Some-f
N/S)
(require racket/require
(for-syntax (subtract-in racket/base subtemplate/override)
racket/list
racket/function
subtemplate/override))
(struct N/S ())
(struct (T) Some N/S ([f : T]))
(struct (T) None N/S ([f : T]))
(define-type-expander BinaryTree
(syntax-parser
[(_ leafⱼ )
;; TODO: implement BinaryTree.
#'(List leafⱼ )]))
(define-type-expander builder-τ
(syntax-parser
[(_ n m)
#:with (Nᵢ ) (range n)
#:with (Mⱼ ) (range m)
#:with ((Kᵢⱼ ) ) (map (const (Kⱼ )) (Nᵢ ))
#:with ((Xᵢⱼ ) ) (map (const (Xⱼ )) (Nᵢ ))
#:with ((Nᵢⱼ ) ) (map (λ (ni) (map (const ni) (Xⱼ ))) (Nᵢ ))
(define Ns (Nᵢ ))
(define Ms (Mⱼ ))
;(define/with-syntax exceptⱼ (remove Mⱼ Ns)) …
; (define/with-syntax ((exceptᵢⱼ …) …)
; (map (const (exceptⱼ …)) (Nᵢ …)))
(define/with-syntax (exceptᵢ ) ((remove Nᵢ Ns) ))
(define/with-syntax ((exceptᵢⱼ ) )
((map (const (remove Nᵢ Ns)) Ms) ))
#'( (A (?@ Kⱼ Xⱼ) )
( A
(?@ Kⱼ Xⱼ)
(BinaryTree
(U (Pairof Nᵢ
;; If Kⱼ is Nᵢ, then {∩ Kᵢⱼ {U . exceptᵢⱼ}} will
;; Nothing. We multiply the Nothing together by
;; building a List out of them (a single occurrence
;; of Nothing should collapse the list), so that the
;; result should be Nothing only if there is no Kⱼ
;; equal to Nᵢ. To force TR to propagate Nothing as
;; much as possible, we intersect it with
;; (None Any), which should be a no-op, but makes
;; sure the simplifier which runs with ∩ kicks in.
;; Therefore, the (None whatever) should appear only
;; if there is indeed no key provided for that leaf.
( (None (List { Kᵢⱼ {U . exceptᵢⱼ}} ))
A))
( (Pairof Kᵢⱼ (Some Xᵢⱼ))
(Pairof Nᵢⱼ A))
)
)))]))
; ../../../.racket/snapshot/pkgs/typed-racket-lib/typed-racket/types/overlap.rkt:40:0: mask-accessor: contract violation
; expected: mask?
; given: #f
;(define-type τ-4-2 (builder-τ 4 2))
(define-type t-4-2
(All (A 0/K 0/X 1/K 1/X)
(-> A
0/K
0/X
1/K
1/X
(List
(U (Pairof ( 0/K Zero) ( (Some 0/X) A))
(Pairof ( 1/K Zero) ( (Some 1/X) A))
(Pairof
Zero
(
(None
(List
(U ( 0/K 2) ( 0/K 3) ( 0/K One))
(U ( 1/K 2) ( 1/K 3) ( 1/K One))))
A)))
(U (Pairof ( 0/K One) ( (Some 0/X) A))
(Pairof ( 1/K One) ( (Some 1/X) A))
(Pairof
One
(
(None
(List
(U ( 0/K 2) ( 0/K 3) ( 0/K Zero))
(U ( 1/K 2) ( 1/K 3) ( 1/K Zero))))
A)))
(U (Pairof ( 0/K 2) ( (Some 0/X) A))
(Pairof ( 1/K 2) ( (Some 1/X) A))
(Pairof
2
(
(None
(List
(U ( 0/K 3) ( 0/K One) ( 0/K Zero))
(U ( 1/K 3) ( 1/K One) ( 1/K Zero))))
A)))
(U (Pairof ( 0/K 3) ( (Some 0/X) A))
(Pairof ( 1/K 3) ( (Some 1/X) A))
(Pairof
3
(
(None
(List
(U ( 0/K 2) ( 0/K One) ( 0/K Zero))
(U ( 1/K 2) ( 1/K One) ( 1/K Zero))))
A)))))))
;]