The previous for/fold/derived examples in the docs
incorrectly expanded, placing the entire body of the
user defined for loop into a let expression inside of
for/fold/derived. This meant that break clauses (i.e. #:break
or #:final) that appeared in the body of the user-defined
for loop were not visible to the underlying for/fold/derived
macro after expansion and therefore usages of #:break or #:final
incorrectly resulted in syntax errors (since with the incorrect
expansion, they were seemingly misplaced keywords inside of a let).
With this PR the for/fold/derived examples in the docs now
expand correctly into a form that mirrors the actual
expected syntax of for loops:
(user-defined-for (for-clause ...) body-or-break ... body)
==(now expands more or less into)==>
(for/fold/derived (for-clause ...) body-or-break ... body)
Or in other words, the body of the user defined for loop now correctly
expands directly into the body of for/fold/derived.
Support an external implementation of `read-syntax` by exposing
functionality that is currently internal to `read-syntax`: a srcloc
argument to a "special"-producing port function and wrapping special
results to reliably distinguish them from characters.
Although "macOS" is the correct name for Apple's current desktop OS,
we've decided to go with "Mac OS" to cover all of Apple's Unix-like
desktop OS versions. The label "Mac OS" is more readable, clear in
context (i.e., unlikely to be confused with the Mac OSes that
proceeded Mac OS X), and as likely to match Apple's future OS names
as anything.
Adjust list and stream handling as sequences so that during the body
(for ([i (in-list l)])
....)
then `i` and its cons cell in `l` are not implicitly retained while
the body is evaluated. A `for .... in-stream` similarly avoids
retaining the stream whose head is being used in the loop body.
The `map`, `for-each`, `andmap`, and `ormap` functions are similarly
updated.
The `make-do-sequence` protocol allows an optional extra result so
that new sequence types could have the same properties. It's not clear
that using `make-do-sequence` is any more useful than creating the new
sequence as a stream, but it was easier to expose the new
functionality than to hide it.
Making this work required a repair to the optimizer, which would
incorrectly move an `if` expression in a way that could affect
space complexity, as well as a few repairs to the run-time system
(especially in the vicinity of the built-in `map`, which we should
just get rid of eventually, anyway).
This adds #:eager as an option for controlling this behavior.
Using `#:eager 10` is a 2x improvement in performance for configuration 010001
of the suffixtree benchmark from Takikawa et al, POPL 2016.
The default behavior is unchanged. This is configurable because some
programs are much faster when eager checking is performed. For example:
(require racket/contract)
(collect-garbage)
(time (for/sum ([_ 100000])
(vector-ref (contract (vectorof integer? #:eager #t) #(1) 'pos 'neg)
0)))
(collect-garbage)
(time (for/sum ([_ 100000])
(vector-ref (contract (vectorof integer? #:eager #f) #(1) 'pos 'neg)
0)))
The second loop is 3-4 times slower than the first. However, making
the vector much larger will make the difference go the other way.
* Wrong contract for syntax-local-value in the documentation.
* Clarified signature in documentation for expand-import, expand-export and pre-expand-export
* Corrected typo in documentation for "for".
* Fixed error message for function which seems to have been renamed in the docs
* Fixed typo in a comment in the tests
* Fixed a typo in the documentation for set-subtract.
* Use double ellipses for the free-id-table-set*, free-id-table-set*!, bound-id-table-set* and bound-id-table-set*! operations