Syntax objects generally make sense as properties in other syntax
objects, but they require special care when marshaling to bytecode
(as syntax objects do in general). To make that special handling
possible and reliable, constrain the shape of allowed values.
The name `path-extension` created a conflict for an existing
registered package, so it should not have been added to
`racket/path`.
Also, `path-get-extension` was intended to work on a path
that is syntactically a directory, so fix and test that.
Change the one expansion mode as far as I can tell) that disables
lifts so that lifts are now allowed, which means that
`(syntax-transforming?)` implies `(syntax-transforming--with-lifts?)`.
The old documentation incorrectly characterized when lifts
were allowed. Ryan noticed the documentation problem, and that
observation led to this simplication.
A `#:name` identifier picks the name that is bound to static
information about a structure type. An `#:extra-name` identifier
specifies an additional name to be bound to the information.
This pair of options is analogous to `#:constructor-name`
and `#:extra-constructor-name`.
Based on Jen Axel's suggestion and implementation.
Closes#1309
Provide a cleaned-up set up path-extension functions. In contrast
to `path-{add,replace}-suffix` and `filename-extension`, a dot
at the beginning of a path element is not treated as an extension
separator. Also, `path-extension` returns an extension including
its separator, which is more consistent with other extension
functions.
The new `path-has-extension?` function replaces many uses of
regexp matching in the base collections.
Closes#1307
Adjusts the docs, but a future replacement (possibly with a new name
to avoid compatibility issues) should behave like the old docs,
instead.
Closes#1292
Pass a string to the handler to describe the problem.
Also, fix minor issues (GC registration, contracts and `history`
in docs) and make `pregexp`, etc., report compilation errors as
`pregexp`, etc.
`->i` already supports method contracts (for use wihin `object-contract`,
whose `->i` support is tested, but undocumented), which would make `->im`
possible.
Unfortunately, that support is very incomplete, missing support for using
`this` in contracts, making this `->im` (or the undocumented `->i` +
`object-contract` combo) basically useless.
Once/if that is added, then this commit would enable `->im`. Until then,
it's mostly useful for future reference (hence will be reverted).
In the meantime, it's possible to use `->i` within class/object contracts
with an explicit `this` argument, so nothing critical is lost, just a tiny
shortcut.
A syntax property is added as preserved or not. For backward
compatibility, the default for a 'paren-shape key is preserved, and
any other key's default is non-preserved.
Compute an `equal?` hash code for `read`able values that
is a constant, at least for a given version of Racket. Only
(interned) symbols failed to have that property before.
On Unix and OS X, the check to avoid replacing an existing
file or directory is made by Racket, rather than the OS,
so don't claim a system error if the operation fails for
that reason.
Also, update the docs to clarify that the check is not
atomic with the move.
Closes issue #1158
Add 'module-body-inside-context, 'module-body-outside-context, and
'module-body-context-simple? properties to the expansion of a
`module` form. These properties expose scopes that are used by
`module->namespace` and taht appear in marshaled bytecode.
The expression in a `define-runtime-path` form is used in
both a run-time context and a compile-time context. The
latter is used for `raco exe`. In a cross-build context,
you might need to load OpenSSL support for Linux (say)
at build time while generating executables that refer to
Windows (say) OpenSSL support. In that case, `#:runtime?-id`
lets you choose between `(cross-system-type)` and
`(system-type)`.
Merge to v6.4
In particular, instead of going directly back to the chaperone, handle
the case where the function doesn't accept keyword arguments with a
less expensive fallback.
The less expensive fallback uses a case-lambda wrapper (wrapped inside
a make-keyword-procedure) to close over the neg-party and avoid the
chaperone creation. With this commit, the program below gets about 3x
faster, and is only about 20% slower than the version that replaces
the "(let ([f f]) ...)" with its body
#lang racket/base
(module m racket/base
(require racket/contract/base)
(provide (contract-out [f (-> integer? integer?)]))
(define (f x) x))
(require 'm)
(collect-garbage)
(time (for ([x (in-range 5000000)]) (let ([f f]) (f 1))))
Thanks, @samth!
Made the hash-set chaperones essentially forward the hash chaperone
operations, but now explain them all in terms of set-based operations
in the docs.
Also adjusted value-blame and has-blame? to support late-neg projections
Also, add `#:skip-filtered-directory?` to `find-files`.
Less significantly, adjust `pathlist-closure` to be consistent in the
way that it includes a separator at the end of a directory path.
- use chaperone-hash-set for set/c when the contract allows only hash-sets
- add a #:lazy flag to allow explicit choice of when to use laziness
(but have a backwards-compatible default that, roughly, eschews laziness
only when the resulting contract would be flat)
Specifically, remove reliance on procedure-closure-contents-eq? to
tell when a pending check is stronger in favor of usint
contract-stronger?
Also, tighten up the specification of contract-stronger? to require
that any contract is stronger than itself
With this commit, this program gets about 10% slower:
#lang racket/base
(require racket/contract/base)
(define f
(contract
(-> any/c integer?)
(λ (x) (if (zero? x)
0
(f (- x 1))))
'pos 'neg))
(time (f 2000000))
becuase the checking is doing work more explicitly now but because the
checking in more general, it identifies the redundant checking in this
program
#lang racket/base
(require racket/contract/base)
(define f
(contract
(-> any/c integer?)
(contract
(-> any/c integer?)
(λ (x) (if (zero? x)
0
(f (- x 1))))
'pos 'neg)
'pos 'neg))
(time (f 200000))
which makes it run about 13x faster than it did before
I'm not sure if this is a win overall, since the checking can be more
significant in the case of "near misses". For example, with this
program, where neither the new nor the old checking detects the
redundancy is about 40% slower after this commit than it was before:
#lang racket/base
(require racket/contract/base)
(define f
(contract
(-> any/c (<=/c 0))
(contract
(-> any/c (>=/c 0))
(λ (x) (if (zero? x)
0
(f (- x 1))))
'pos 'neg)
'pos 'neg))
(time (f 50000))
(The redundancy isn't detected here because the contract system only
looks at the first pending contract check.)
Overall, despite the fact that it slows down some programs and speeds
up others, my main thought is that it is worth doing because it
eliminates a (painful) reliance on procedure-closure-contents-eq? that
inhibits other approaches to optimizing these contracts we might try.
The `procedure-specialize` function is the identity function, but it
provides a hint to the JIT to compile the body of a closure
specifically for the values in the closure (as opposed to compiling
the body generically for all closure instances).
This hint is useful to the contract system, where a predicate
is coerced to a projection with
(lambda (p?)
(procedure-specialize
(lambda (v)
(if (p? v)
v
....))))
Specializing the projection to a given `p?` allows primitive
predicates to be JIT-inlined in the projection's body.
in particular, when there is a recursive contract, then we check only
some part of the first-order checks and see if that was enough to
distinguish the branches. if it was, we don't continue and otherwise we do
A value that starts "1", "y", or "Y" enabled incremental mode
permanently (any value was allowed formerly), while a value that
starts "0", "n", or "N" causes incremental-mode requests to be
ignored.
Port `examples`, `interactions`, etc., to use the new `examples`
form of `scribble/examples`. The main intended effect is to ensure
that errors are produced by examples only as specifically
indicated.
- uniformly remove the extra layers of calls to unknown functions for
chapereone-of? checks that make sure that chaperone contracts are
well-behaved (put those checks only in contracts that are created
outside racket/contract)
- clean up and simplify how missing projection functions are created
(val-first vs late-neg vs the regular ones)
- add some logging to more accurately tell when late-neg projections
aren't being used
- port the contract combinator that ->m uses to use late-neg
- port the </c combinator to use late-neg
Although calling `(collect-garbage 'incremental)` in a program with
a periodic task is the best way to request incremental collection, it's
handy for some experiments to have an environment variable that turns
it on permanently.
This change also makes incremental-mode minor collections log as "mIn"
instead of "min", and it changes the first field of the logged
`gc-info` structure to be a mode symbol instead of a boolean.
Allow a more dynamic (than `impersonator-prop:application-mark`)
determination of continuation marks and associated values to wrap the
call of an impersonated procedure.
When an internal-definition context is used with `local-expand`, the
any binding added to the context affect expansion, but the binding do
not appear in the expansion. As a result, Check Syntax was unable to
draw an arrow from the `s` use to its binding in
(class object%
(define-struct s ())
s)
The general solution is to add the internal-definition context's
bindings to the expansion as a 'disappeared-bindings property. The new
`internal-definitionc-context-track` function does that using a new
`internal-definition-context-binding-identifier` primitive.
Make the old-generation marking process incremental
on request, where `(collect-garbage 'incremental)`
makes a request.
Only the marking phase of an old-generation collection
is incremental, so far. In exchange for slower
minor collections and a larger heap, you get a major
collection pause time that is roughly halved. So, this
is a step forward, but not good enough for most purposes
that need incremental collection.
An incremental-mode request sticks until the next
major GC. The idea is that any program that could
benefit from incremental collection will have
some sort of periodic task where it can naturally
request incremental mode. (In particular, that
request belongs in the program, not in some external
flag to the runtime system.) Otherwise, the
system should revert to non-incremental mode, given
that incremental mode is slower overall and can
use much more memory --- usually within a factor of
two, but the factor can be much worse due to
fragmentation.
After some expansions, a expression with the syntax property 'inferred-name of
'x is converted to one with ('x . 'x), so it's not useful to get the name of a
procedure. So we simplify the syntax property 'inferred-name to handle
these cases.
The `prop:expansion-contexts` property can control the expansion
of a rename transformer in much the same that conditionals on
`(syntax-local-context)` can control the expansion of other
transformers.