racket/collects/macro-debugger/model/hide.ss
Ryan Culpepper 927c5b5b46 Macro stepper:
fixed bug in hiding + lifts in module
  explicit error on lift/let

svn: r6228
2007-05-17 17:56:08 +00:00

954 lines
39 KiB
Scheme

(module hide mzscheme
(require (lib "plt-match.ss")
(lib "list.ss")
"deriv.ss"
"deriv-util.ss"
"synth-engine.ss"
"synth-derivs.ss"
"stx-util.ss"
"context.ss")
(provide hide/policy
macro-policy
force-letrec-transformation
current-hiding-warning-handler
(struct nonlinearity (message paths))
(struct localactions ()))
;; hide/policy : Derivation (identifier -> boolean) -> (values Derivation syntax)
(define (hide/policy deriv show-macro?)
(parameterize ((macro-policy show-macro?))
(hide deriv)))
;; current-hiding-warning-handler : (parameter-of (symbol string -> void))
(define current-hiding-warning-handler
(make-parameter
(lambda (tag message) (printf "~a: ~a~n" tag message))))
(define (warn tag message) ((current-hiding-warning-handler) tag message))
;; current-unvisited-lifts : (paramter-of Derivation)
;; The derivs for the lifts yet to be seen in the processing
;; of the first part of the current lift-deriv.
(define current-unvisited-lifts (make-parameter null))
;; current-unhidden-lifts : (parameter-of Derivation)
;; The derivs for those lifts that occur within unhidden macros.
;; Derivs are moved from the current-unvisited-lifts to this list.
(define current-unhidden-lifts (make-parameter null))
;; add-unhidden-lift : Derivation -> void
(define (add-unhidden-lift d)
(current-unhidden-lifts (cons d (current-unhidden-lifts))))
;; extract/remove-unvisted-lift : identifier -> Derivation
(define (extract/remove-unvisited-lift id)
(define (get-defined-id d)
(match d
[(AnyQ deriv (e1 e2))
(with-syntax ([(?define-values (?id) ?expr) e1])
#'?id)]))
;; The Wrong Way
(let ([unvisited (current-unvisited-lifts)])
(unless (pair? unvisited)
(error 'hide:extract/remove-unvisited-lift
"out of lifts!"))
(let ([lift (car unvisited)])
(current-unvisited-lifts (cdr unvisited))
lift))
;; The Right Way
;; FIXME: Doesn't work inside of modules. Why not?
#;
(let loop ([lifts (current-unvisited-lifts)]
[prefix null])
(cond [(null? lifts)
#;(fprintf (current-error-port)
"hide:extract/remove-unvisited-lift: couldn't find lift for ~s~n"
id)
(raise (make-localactions))]
[(bound-identifier=? id (get-defined-id (car lifts)))
(let ([lift (car lifts)])
(current-unvisited-lifts
(let loop ([prefix prefix] [lifts (cdr lifts)])
(if (null? prefix)
lifts
(loop (cdr prefix) (cons (car prefix) lifts)))))
lift)]
[else
(loop (cdr lifts) (cons (car lifts) prefix))])))
;
;
; ;
; ;
; ;; ;;; ;;; ;;;;;; ;;;; ;;;;;
; ;; ; ; ; ; ; ; ;; ;
; ; ; ;; ;; ; ;; ;; ;;
; ; ; ;; ;; ; ;;;;;;; ;;;
; ; ; ;; ;; ; ; ;;;;
; ; ; ;; ;; ; ;; ; ;;
; ; ; ; ; ;; ;; ; ;;
; ;;; ;;; ;;; ;;; ;;;; ;;;;;;
;
;
;; The real goal is to implement a macro-hiding facility that preserves
;; as much of the real module-body and block pass separation as possible.
;; After attempts to do that, I've decided to scale back to a one-pass
;; simplification that should be much easier, get that out for people
;; to use, and then finish the two-pass solution.
;; 2-Pass method of handling blocks
;; 1 Normalize block derivation
;; 2 For each element in the normalized block derivation:
;; a Recur on the pass1 derivation
;; b Synth on the pass2 derivation using the pass1 result syntax
;; 3 Recombine into block derivation
;; ? (Optionally) un-normalize block derivation again
;; Unimplemented
;; Question: which way to match subterms with subderivations
;; 1 Gather subterms into table and recur on subderivations
;; 2 Gather subderivations into table and recur on subterms
;; Benefits of 1:
;; Preserves order of expansion, even if macro reorders (so effects happen right)
;; May be easier to deal with marking/renaming
;; Easier to deal with lifting (lifts get seen in correct order)
;; Gives finer control over handling of blocks (joining pass1 and pass2 expansions)
;; Drawbacks of 1:
;; Need to process results more to find final syntax & nonlinear subterms
;; Benefits of 2:
;; (Already written that way once...)
;; Nonlinear subterms fairly obvious
;; Computing final syntax fits naturally into recursion
;; I will try 1.
;
; ; ;;;
; ;; ;; ;
; ; ;
; ; ;
; ; ;;; ;;;; ;;;; ;;;;
; ;; ; ; ; ; ; ;
; ; ; ; ;; ; ;; ;;
; ; ; ; ;; ; ;;;;;;;
; ; ; ; ;; ; ;
; ; ; ; ;; ; ;;
; ; ; ; ;; ;;; ;;
; ;;; ;;; ;;;;;;; ;;; ;; ;;;;
;
;
;; Macro hiding:
;; The derivation is "visible" or "active" by default,
;; but pieces of it may need to be hidden.
;; hide : Derivation -> (values Derivation syntax)
(define (hide deriv)
;; for-deriv : Derivation -> (values Derivation syntax)
(define (for-deriv d)
(match d
;; Primitives
[(AnyQ p:variable (e1 e2 rs))
(values d e2)]
[(AnyQ p:module (e1 e2 rs single-body-form? body))
;; FIXME: Find the appropriate module-begin identifier to test
;; otherwise, hide module, seek for body elements...
(let ([show-k
(lambda ()
(>>Prim d e1 #t (make-p:module single-body-form? body)
(module name lang . _BODY)
(module name lang BODY)
([for-deriv BODY body])))])
(if (or single-body-form? (show-macro? #'#%plain-module-begin))
(show-k)
(with-handlers ([nonlinearity?
(lambda (nl)
(warn 'nonlinearity
(format "~a: ~s"
(nonlinearity-message nl)
(nonlinearity-paths nl)))
(show-k))]
[localactions?
(lambda (nl)
(warn 'localactions
"opaque macro called local-expand or lifted expression")
(show-k))])
(seek/deriv d))))]
[(struct p:#%module-begin (e1 e2 rs pass1 pass2))
;; FIXME: hide tagging
(let ([lderiv (module-begin->lderiv d)])
(recv [(lderiv es2) (for-lderiv lderiv)]
[(d) (lderiv->module-begin lderiv e1)]
(values d (deriv-e2 d))))]
[(AnyQ p:define-syntaxes (e1 e2 rs rhs))
(>>P d (make-p:define-syntaxes rhs)
(define-syntaxes variables RHS)
([for-deriv/phase-up RHS rhs]))]
[(AnyQ p:define-values (e1 e2 rs rhs))
(>>P d (make-p:define-values rhs)
(define-values variables RHS)
([for-deriv RHS rhs]))]
[(AnyQ p:expression (e1 e2 rs inner))
(>>P d (make-p:expression inner)
(#%expression INNER)
([for-deriv INNER inner]))]
[(AnyQ p:if (e1 e2 rs full? test then else))
(if full?
(>>P d (make-p:if full? test then else)
(if TEST THEN ELSE)
([for-deriv TEST test]
[for-deriv THEN then]
[for-deriv ELSE else]))
(>>P d (make-p:if full? test then else)
(if TEST THEN)
([for-deriv TEST test]
[for-deriv THEN then])))]
[(AnyQ p:wcm (e1 e2 rs key mark body))
(>>P d (make-p:wcm key mark body)
(wcm KEY MARK BODY)
([for-deriv KEY key]
[for-deriv MARK mark]
[for-deriv BODY body]))]
[(AnyQ p:set! (e1 e2 rs id-resolves rhs))
(>>P d (make-p:set! id-resolves rhs)
(set! id RHS)
([for-deriv RHS rhs]))]
;; FIXME: Correct?
[(AnyQ p:set!-macro (e1 e2 rs deriv))
(>>Pn d (make-p:set!-macro deriv)
INNER
([for-deriv INNER deriv]))]
[(AnyQ p:begin (e1 e2 rs lderiv))
(>>P d (make-p:begin lderiv)
(begin . LDERIV)
([for-lderiv LDERIV lderiv]))]
[(AnyQ p:begin0 (e1 e2 rs first lderiv))
(>>P d (make-p:begin0 first lderiv)
(begin0 FIRST . LDERIV)
([for-deriv FIRST first]
[for-lderiv LDERIV lderiv]))]
[(AnyQ p:#%app (e1 e2 rs tagged-stx ld))
(if (or (eq? e1 tagged-stx) (show-macro? #'#%app))
;; If explicitly tagged, simple
(>>Prim d tagged-stx #t (make-p:#%app tagged-stx ld)
(#%app . LDERIV) (#%app . LDERIV)
([for-lderiv LDERIV ld]))
;; If implicitly tagged:
(let-values ([(ld* es2*) (for-lderiv ld)])
(match ld*
[(IntQ lderiv (es1 es2 derivs*))
(let ([stx* (and e2 es2 (datum->syntax-object e2 es2 e2 e2))])
(values
(rewrap d (make-p:synth e1 stx* rs
(map (lambda (n d)
(make-s:subterm (list (make-ref n)) d))
(iota (length derivs*))
derivs*)))
stx*))]
[(struct error-wrap (exn _ _))
(values (make-error-wrap exn #f (make-p:synth e1 #f rs null))
#f)])))]
[(AnyQ p:lambda (e1 e2 rs renames body))
(>>P d (make-p:lambda renames body)
(lambda FORMALS . BODY)
([for-rename (FORMALS . _B) renames]
[for-bderiv BODY body]))]
[(AnyQ p:case-lambda (e1 e2 rs renames+bodies))
(let ([var-renames (map caar renames+bodies)])
(>>P d (make-p:case-lambda renames+bodies)
(case-lambda [FORMALS . BODY] ...)
([for-renames (FORMALS ...) var-renames]
[for-cdr-bderivs (BODY ...) renames+bodies])))]
[(AnyQ p:let-values (e1 e2 rs renames rhss body))
(let ([var-renames (map stx-car (stx->list (stx-car renames)))])
(>>P d (make-p:let-values renames rhss body)
(let-values ([VARS RHS] ...) . BODY)
([for-renames (VARS ...) var-renames]
[for-derivs (RHS ...) rhss]
[for-bderiv BODY body])))]
[(AnyQ p:letrec-values (e1 e2 rs renames rhss body))
(let ([var-renames (if renames (map stx-car (stx->list (stx-car renames))) null)])
(>>P d (make-p:letrec-values renames rhss body)
(letrec-values ([VARS RHS] ...) . BODY)
([for-renames (VARS ...) var-renames]
[for-derivs (RHS ...) rhss]
[for-bderiv BODY body])))]
[(AnyQ p:letrec-syntaxes+values (e1 e2 rs srenames srhss vrenames vrhss body))
(let ([svar-renames (if srenames (map stx-car (stx->list (stx-car srenames))) null)]
[vvar-renames (if vrenames (map stx-car (stx->list (stx-car vrenames))) null)])
(>>Pn d (make-p:letrec-syntaxes+values srenames srhss vrenames vrhss body)
(letrec-syntaxes+values ([SVARS SRHS] ...) ([VVARS VRHS] ...) . BODY)
([for-renames (SVARS ...) svar-renames]
[for-renames (VVARS ...) vvar-renames]
[for-derivs/phase-up (SRHS ...) srhss]
[for-derivs (VRHS ...) vrhss]
[for-bderiv BODY body])))]
[(AnyQ p:#%datum (e1 e2 rs tagged-stx))
(cond [(or (eq? tagged-stx e1) (show-macro? #'#%datum))
(values d e2)]
[else
;; hide the #%datum tagging
;; Is this the right way?
(values (make-p:synth e1 e1 rs null)
e1)])]
[(AnyQ p:#%top (e1 e2 rs tagged-stx))
(cond [(or (eq? tagged-stx e1) (show-macro? #'#%top))
(values d e2)]
[else
;; hide the #%top tagging
(values (rewrap d (make-p:synth e1 e1 rs null))
e1)])]
[(AnyQ p::STOP (e1 e2 rs))
(values d e2)]
[(AnyQ p:rename (e1 e2 rs rename inner))
(>>P d (make-p:rename rename inner)
INNER
([for-deriv INNER inner]))]
;; Macros
[(AnyQ mrule (e1 e2 tx next))
(let ([show-k
(lambda ()
(recv [(tx) (for-transformation tx)]
[(next e2) (for-deriv next)]
(values (rewrap d (make-mrule e1 e2 tx next))
e2)))])
(if (show-transformation? tx)
(show-k)
(with-handlers ([nonlinearity?
(lambda (nl)
(warn 'nonlinearity
(format "~a: ~s"
(nonlinearity-message nl)
(nonlinearity-paths nl)))
(show-k))]
[localactions?
(lambda (nl)
(warn 'localactions
"opaque macro called local-expand or lifted expression")
(show-k))])
(seek/deriv d))))]
;; Lift
;; Shaky invariant:
;; Only lift-exprs occur in first... no lift-end-module-decls
;; They occur in reverse order.
;; PROBLEM: Hiding process may disturb order lifts are seen.
[(IntQ lift-deriv (e1 e2 first lifted-stx second) tag)
;; Option 2: Hide first, show *all* lifted expressions,
;; and hide second (lifted defs only; replace last expr with first-e2)
(let* ([second-derivs
(match second
[(IntQ p:begin (_ _ _ (IntQ lderiv (_ _ inners))))
(reverse inners)])]
[lift-derivs/0
;; If interrupted, then main-expr deriv will not be in list
;; second-derivs are already reversed
(if tag second-derivs (cdr second-derivs))]
[begin-stx (stx-car lifted-stx)])
(define-values (first-d first-e2 lift-derivs)
;; Note: lift-derivs are back in reverse order from current-unvisited-lifts
(parameterize ((current-unvisited-lifts lift-derivs/0)
(current-unhidden-lifts null))
#;(printf "setting current-unvisited-lifts: ~s~n" (length lift-derivs/0))
(let-values ([(d e2) (for-deriv first)])
(when (pair? (current-unvisited-lifts))
(error 'hide:lift-deriv "missed ~s lift-expressions: ~s"
(length (current-unvisited-lifts))
(current-unvisited-lifts)))
(values d e2 (current-unhidden-lifts)))))
(define lift-stxs (map lift/deriv-e1 lift-derivs))
(define main-deriv (make-p:stop first-e2 first-e2 null))
;; If no lifted syntaxes remain, then simplify:
(if (null? lift-derivs)
(values first-d first-e2)
(let ()
(define lifted-stx*
(datum->syntax-object lifted-stx
`(,begin-stx ,@lift-stxs ,first-e2)
lifted-stx
lifted-stx))
(define inner-derivs
;; If interrupted, then main-expr deriv will not be in list
(if tag lift-derivs (append lift-derivs (list main-deriv))))
(define lderiv*
(rewrap second
(make-lderiv (map lift/deriv-e1 inner-derivs)
(and (not tag)
(map lift/deriv-e2 inner-derivs))
inner-derivs)))
(define-values (lderiv** es2**) (for-lderiv lderiv*))
(define e2*
(and es2**
(datum->syntax-object e2 `(,begin-stx ,@es2**) e2 e2)))
(define second*
(rewrap second (make-p:begin lifted-stx* e2* null lderiv**)))
(values (rewrap d (make-lift-deriv e1 e2* first-d lifted-stx* second*))
e2*))))]
[(AnyQ lift/let-deriv (e1 e2 first lifted-stx next))
;; FIXME
(error 'hide "lift/let unimplemented")]
;; Errors
[#f (values #f #f)]))
;; for-transformation : Transformation -> Transformation???
(define (for-transformation tx)
(match tx
[(AnyQ transformation (e1 e2 rs me1 me2 locals _seq))
(let ([locals (map for-local-action (or locals null))])
(rewrap tx (make-transformation e1 e2 rs me1 me2 locals _seq)))]))
;; for-local-action : LocalAction -> LocalAction
(define (for-local-action la)
(match la
[(struct local-expansion (e1 e2 me1 me2 for-stx? deriv))
(let-values ([(deriv e2) (for-deriv deriv)])
(make-local-expansion e1 e2 me1 me2 for-stx? deriv))]
[(struct local-expansion/expr (e1 e2 me1 me2 for-stx? opaque deriv))
(error 'hide:for-local-action "not implemented for local-expand-expr")]
[(struct local-lift (expr id))
(add-unhidden-lift (extract/remove-unvisited-lift id))
la]
[(struct local-lift-end (decl))
;;(printf "hide:for-local-action: local-lift-end unimplemented~n")
la]
[(struct local-bind (deriv))
(let-values ([(deriv e2) (for-deriv deriv)])
(make-local-bind deriv))]))
;; for-rename : Rename -> (values Rename syntax)
(define (for-rename rename)
(values rename rename))
;; for-renames : (list-of Rename) -> (values (list-of Rename) syntaxes)
(define (for-renames renames)
(values renames renames))
;; for-deriv/phase-up : Derivation -> (values Derivation syntax)
(define (for-deriv/phase-up d)
(parameterize ((phase (add1 (phase))))
(for-deriv d)))
;; for-derivs : (list-of Derivation) -> (values (list-of Derivation) (list-of syntax))
(define (for-derivs derivs)
(let ([results
(map (lambda (d) (let-values ([(a b) (for-deriv d)]) (cons a b)))
derivs)])
(values (map car results) (map cdr results))))
;; for-derivs/phase-up : (list-of Derivation) -> (values (list-of Derivation) (list-of syntax))
(define (for-derivs/phase-up derivs)
(parameterize ((phase (add1 (phase))))
(for-derivs derivs)))
;; for-cdr-bderivs : (list-of (cons 'a BlockDerivation))
;; -> (values (list-of (cons 'a BlockDerivation)) (list-of syntax))
(define (for-cdr-bderivs xs+bderivs)
(let ([results
(map (lambda (d) (recv [(a b) (for-bderiv (cdr d))] (cons (cons (car d) a) b)))
xs+bderivs)])
(values (map car results) (map cdr results))))
;; for-lderiv : ListDerivation -> (values ListDerivation (list-of syntax))
(define (for-lderiv ld)
(match ld
[(AnyQ lderiv (es1 es2 derivs))
(let-values ([(derivs stxs) (for-derivs derivs)])
(let ([stxs (if (wrapped? ld) #f stxs)])
(values (rewrap ld (make-lderiv es1 stxs derivs))
stxs)))]
[#f (values #f #f)]))
;; 1-pass method of handling blocks
;; 1 Combine pass1 and pass2 into super-pass2
;; 2 Recombine into block derivation with trivial pass1
;; for-bderiv : BlockDerivation -> (values BlockDerivation (list-of syntax))
(define (for-bderiv bd)
(if (force-letrec-transformation)
(match bd
[(IntQ bderiv (es1 es2 pass1 trans pass2))
(recv [(pass2 es2) (for-lderiv pass2)]
(values (rewrap/nt bd (make-bderiv es1 es2 pass1 trans pass2))
es2))])
(match bd
[(IntQ bderiv (es1 es2 pass1 trans pass2))
(let ([pass2 (bderiv->lderiv bd)])
(recv [(pass2 es2) (for-lderiv pass2)]
(values (rewrap/nt bd (make-bderiv es1 es2 null 'list pass2))
es2)))]
[#f (values #f #f)])))
(for-deriv deriv))
;
; ;;
; ;;
; ;
; ;
; ;;;;; ;;;; ;;;; ; ;;;
; ;; ; ; ; ; ; ; ;
; ;; ;; ;; ;; ;; ; ;
; ;;; ;;;;;;; ;;;;;;; ;;;
; ;;;; ; ; ;;;
; ; ;; ;; ;; ; ;;
; ; ;; ;; ;; ; ;;
; ;;;;;; ;;;; ;;;; ;;; ;;;
;
;; Seek:
;; The derivation is "inactive" or "hidden" by default,
;; but pieces of it can become visible if they correspond to subterms
;; of the hidden syntax.
;; seek/deriv : Derivation -> (values Derivation syntax)
;; Seeks for derivations of all proper subterms of the derivation's
;; initial syntax.
(define (seek/deriv d)
(match d
[(AnyQ deriv (e1 e2))
(let ([subterms (gather-proper-subterms e1)])
(parameterize ((subterms-table subterms))
(match (seek d)
[(and (struct error-wrap (exn tag inner)) ew)
(values ew #f)
#;(values ew (deriv-e2 inner))]
[deriv
(values (rewrap d deriv) (lift/deriv-e2 deriv))])))]))
;; seek : Derivation -> Derivation
;; Expects macro-policy, subterms-table to be set up already
(define (seek d)
(match d
[(AnyQ deriv (e1 e2))
(let ([subterm-derivs (subterm-derivations d)])
(check-nonlinear-subterms subterm-derivs)
;; Now subterm substitution is safe, because they don't overlap
(create-synth-deriv e1 subterm-derivs))]))
;; create-synth-deriv : syntax (list-of Subterm) -> Derivation
(define (create-synth-deriv e1 subterm-derivs)
(define (error? x)
(and (s:subterm? x)
(error-wrap? (s:subterm-deriv x))
(not (s:subterm-path x))))
(define (interrupted? x)
(and (s:subterm? x)
(interrupted-wrap? (s:subterm-deriv x))))
(let* ([errors (map s:subterm-deriv (filter error? subterm-derivs))]
[subterms (filter (lambda (x) (not (error? x))) subterm-derivs)]
[interrupted (filter interrupted? subterms)])
(let ([e2 (and (null? errors)
(null? interrupted)
(substitute-subterms e1 subterms))])
(let ([d (make-p:synth e1 e2 null subterms)]
[wrap (cond [(pair? errors) (car errors)]
[(pair? interrupted) (car interrupted)]
[else #f])])
(if wrap (rewrap wrap d) d)))))
;; subterm-derivations : Derivation -> (list-of Subterm)
(define (subterm-derivations d)
;; for-deriv : Derivation -> (list-of Subterm)
(define (for-deriv d)
(let ([path (check-visible d)])
(if path
(let-values ([(d _) (hide d)])
(list (make-s:subterm path d)))
(for-unlucky-deriv/record-error d))))
;; for-deriv/phase-up : Derivation -> (list-of Subterm)
(define (for-deriv/phase-up d)
(parameterize ((phase (add1 (phase))))
(for-deriv d)))
;; check-visible : Derivation -> Path/#f
(define (check-visible d)
(match d
[(AnyQ deriv (e1 e2))
(let ([paths (table-get (subterms-table) e1)])
(cond [(null? paths) #f]
[(null? (cdr paths))
(car paths)]
[else
;; More than one path to the same(eq?) syntax object
;; Not good.
;; FIXME: Better to delay check to here, or check whole table first?
;; FIXME
(raise
(make-nonlinearity
"nonlinearity in original term" paths))]))]
[#f #f]))
;; for-unlucky-deriv/record-error -> (list-of Subterm)
;; Guarantee: (deriv-e1 deriv) is not in subterms table
(define (for-unlucky-deriv/record-error d)
(if (error-wrap? d)
(append (for-unlucky-deriv d)
(list (make-s:subterm #f d)))
(for-unlucky-deriv d)))
;; for-unlucky-deriv : Derivation -> (list-of Subterm)
;; Guarantee: (deriv-e1 deriv) is not in subterms table
(define (for-unlucky-deriv d)
(match d
;; Primitives
[(AnyQ p:module (e1 e2 rs one-body-form? body))
(cond [one-body-form?
;; FIXME: tricky... how to do renaming?
(for-deriv body)]
[else
(with-syntax ([(?module ?name ?lang . ?body) e1]
[(?module-begin . ?body*) (lift/deriv-e1 body)])
(>>Seek [#:rename (do-rename #'?body #'?body*)]
(for-deriv body)))])]
[(AnyQ p:#%module-begin (e1 e2 rs pass1 pass2))
(let ([lderiv (module-begin->lderiv d)])
(for-lderiv lderiv))]
[(AnyQ p:variable (e1 e2 rs))
null]
[(AnyQ p:define-syntaxes (e1 e2 rs rhs))
(>>Seek (for-deriv/phase-up rhs))]
[(AnyQ p:define-values (e1 e2 rs rhs))
(>>Seek (for-deriv rhs))]
[(AnyQ p:expression (e1 e2 rs inner))
(>>Seek (for-deriv inner))]
[(AnyQ p:if (e1 e2 rs full? test then else))
(>>Seek (for-deriv test)
(for-deriv then)
(if full?
(for-deriv else)
null))]
[(AnyQ p:wcm (e1 e2 rs key value body))
(>>Seek (for-deriv key)
(for-deriv value)
(for-deriv body))]
[(AnyQ p:set! (e1 e2 rs id-resolves rhs))
(>>Seek (for-deriv rhs))]
[(AnyQ p:set!-macro (e1 e2 rs deriv))
(>>Seek (for-deriv deriv))]
[(AnyQ p:begin (e1 e2 rs lderiv))
(>>Seek (for-lderiv lderiv))]
[(AnyQ p:begin0 (e1 e2 rs head lderiv))
(>>Seek (for-deriv head)
(for-lderiv lderiv))]
[(AnyQ p:#%app (e1 e2 rs tagges-stx lderiv))
(>>Seek (for-lderiv lderiv))]
[(AnyQ p:lambda (e1 e2 rs renames body) exni)
(>>Seek [#:rename (do-rename/lambda e1 renames)]
(for-bderiv body))]
[(AnyQ p:case-lambda (e1 e2 rs renames+bodies))
(with-syntax ([(?case-lambda ?clause ...) e1])
(let ()
(define (handle-clause clause-stx rename body)
(>>Seek [#:rename (do-rename/case-lambda clause-stx rename)]
(for-bderiv body)))
(let loop ([clauses (syntax->list #'(?clause ...))]
[renames+bodies renames+bodies])
(if (pair? renames+bodies)
(append (handle-clause (car clauses)
(caar renames+bodies)
(cdar renames+bodies))
(loop (cdr clauses) (cdr renames+bodies)))
null))))]
[(AnyQ p:let-values (e1 e2 rs renames rhss body))
(>>Seek [#:rename (do-rename/let e1 renames)]
[#:append (map for-deriv rhss)]
(for-bderiv body))]
[(AnyQ p:letrec-values (e1 e2 rs renames rhss body))
(>>Seek [#:rename (do-rename/let e1 renames)]
[#:append (map for-deriv rhss)]
(for-bderiv body))]
[(AnyQ p:letrec-syntaxes+values (e1 e2 rs srenames srhss vrenames vrhss body))
(>>Seek [#:rename (do-rename/lsv1 e1 srenames)]
[#:append (map for-deriv/phase-up srhss)]
[#:rename (do-rename/lsv2 srenames vrenames)]
[#:append (map for-deriv vrhss)]
(for-bderiv body))]
[(AnyQ p::STOP (e1 e2 rs))
null]
;; synth (should synth be idempotent?... heh, no point for now)
[(AnyQ p:rename (e1 e2 rs rename inner))
(>>Seek [#:rename (do-rename (car rename) (cdr rename))]
(for-deriv inner))]
;; Macros
[(AnyQ mrule (e1 e2 (? error-wrap? ew) next))
(list (make-s:subterm #f ew))]
[(AnyQ mrule (e1 e2 tx next))
(recv [(subterms table) (for-transformation tx)]
(parameterize ((subterms-table table))
(append subterms (for-deriv next))))]
[(AnyQ lift-deriv (e1 e2 first lifted-stx next))
#;(printf "encountered lift-deriv in seek mode!~n")
(raise (make-localactions))
(>>Seek (for-deriv first)
(for-deriv next))]
[(AnyQ lift/let-deriv (e1 e2 first lifted-stx next))
(raise (make-localactions))]
;; Errors
[#f null]
))
;; for-transformation : Transformation -> (values (list-of Subterm) Table)
(define (for-transformation tx)
(match tx
[(IntQ transformation (e1 e2 rs me1 me2 locals _seq))
;; FIXME: We'll need to use e1/e2/me1/me2 to synth locals, perhaps
;; FIXME: and we'll also need to account for *that* marking, too...
(for-each for-local-action (or locals null))
;(let* ([table-at-end #f]
; [subterms
; (>>Seek [#:rename (do-rename e1 me1)]
; [#:append (map for-local locals)]
; [#:rename (do-rename me2 e2)]
; (begin (set! table-at-end (subterms-table))
; null))])
; (values subterms table-at-end))
(let-values ([(rename-subterms1 table1) (do-rename e1 me1)])
(parameterize ((subterms-table table1))
(let () ;; [sss (map for-local locals)]
(let-values ([(rename-subterms2 table2) (do-rename me2 e2)])
;; FIXME: Including these seems to produce evil results
;; ie, parts of the hidden macro use appear as marked
;; when they shouldn't
(values null ;; (append rename-subterms1 (apply append sss) rename-subterms2)
table2)))))]
[(ErrW transformation (e1 e2 rs me1 me2 locals _seq))
(for-each for-local-action (or locals null))
(values null #f)]))
;; for-local-action : LocalAction -> (list-of Subterm)
(define (for-local-action local)
(match local
[(struct local-expansion (e1 e2 me1 me2 for-stx? deriv))
(let-values ([(rename-subtersm2 table2) (do-rename me1 e1)])
(let ([subterms (for-deriv deriv)])
(when (pair? (filter s:subterm? subterms))
(raise (make-localactions)))))]
[(struct local-expansion/expr (e1 e2 me1 me2 for-stx? opaque deriv))
(let-values ([(rename-subtersm2 table2) (do-rename me1 e1)])
(let ([subterms (for-deriv deriv)])
(when (pair? (filter s:subterm? subterms))
(raise (make-localactions)))))]
[(struct local-lift (expr id))
;; FIXME: seek in the lifted deriv, transplant subterm expansions *here*
(extract/remove-unvisited-lift id)]
[(struct local-lift-end (decl))
;; FIXME!!!
(void)]
[(struct local-bind (deriv))
(raise (make-localactions))]))
;; for-lderiv : ListDerivation -> (list-of Subterm)
(define (for-lderiv ld)
(match ld
[(IntQ lderiv (es1 es2 derivs))
(apply append (map for-deriv derivs))]
[(struct error-wrap (exn tag inner))
(append (for-lderiv inner)
(list (make-s:subterm #f ld)))]
[#f null]))
;; for-bderiv : BlockDerivation -> (list-of Subterm)
(define (for-bderiv bd)
(for-lderiv (bderiv->lderiv bd)))
(for-deriv d))
;
; ;;;;
; ;; ;
; ; ;
; ; ;
; ; ;;; ;;;; ; ;; ;;; ;;;; ;;; ;;; ;;;;;
; ;; ; ; ; ; ;;; ;; ; ; ;;; ; ;; ;
; ; ; ;; ;; ; ; ;; ;; ;; ; ; ;;
; ; ; ;;;;;;; ; ; ;; ;;;;;;; ; ;;;
; ; ; ; ; ; ;; ; ; ;;;;
; ; ; ;; ; ; ;; ;; ; ; ;;
; ; ; ;; ; ; ; ;; ; ; ;;
; ;;; ;;; ;;;; ;;;;;;; ;;;; ;;;; ;;;;;; ;;;;;;
; ;
; ;
; ;;;;
;
;; show-macro? : identifier -> boolean
(define (show-macro? id)
((macro-policy) id))
;; show-mrule? : MRule -> boolean
(define (show-transformation? tx)
(match tx
[(AnyQ transformation (e1 e2 rs me1 me2 locals _seq))
(ormap show-macro? rs)]))
;; gather-one-subterm : syntax syntax -> SubtermTable
(define (gather-one-subterm whole part)
(let ([table (make-hash-table)])
(let ([paths (find-subterm-paths part whole)])
(for-each (lambda (p) (table-add! table part p)) paths))
table))
;; gather-proper-subterms : Syntax -> SubtermTable
;; FIXME: Eventually, need to descend into vectors, boxes, etc.
(define (gather-proper-subterms stx0)
(let ([table (make-hash-table)])
;; loop : Syntax Path -> void
(define (loop stx rpath)
(unless (eq? stx0 stx)
(table-add! table stx (reverse rpath)))
(let ([p (syntax-e stx)])
(when (pair? p)
(loop-cons p rpath 0))))
;; loop-cons : (cons Syntax ?) Path number -> void
(define (loop-cons p rpath pos)
(loop (car p) (cons (make-ref pos) rpath))
(let ([t (cdr p)])
(cond [(syntax? t)
(let ([te (syntax-e t)])
(if (pair? te)
(begin
(table-add! table t (reverse (cons (make-tail pos) rpath)))
(loop-cons te rpath (add1 pos)))
(loop t (cons (make-tail pos) rpath))))]
[(pair? t)
(loop-cons t rpath (add1 pos))]
[(null? t)
(void)])))
(loop stx0 null)
table))
(define (map/2values f items)
(if (null? items)
(values null null)
(let*-values ([(a0 b0) (f (car items))]
[(as bs) (map/2values f (cdr items))])
(values (cons a0 as) (cons b0 bs)))))
;
; ;;;;
; ;; ;
; ; ; ;
; ; ; ;
; ;;;;;; ;;;;; ; ;;; ; ;;;;
; ; ; ; ;; ;; ; ; ;
; ; ; ; ;; ; ;; ;;
; ; ;;;; ; ;; ; ;;;;;;;
; ; ;; ; ; ;; ; ;
; ; ;; ; ; ;; ; ;;
; ;; ;; ;; ; ; ; ;;
; ;;; ;;; ;; ;;;; ;;;;;;; ;;;;
;
;
;
;; A Table is a hashtable[syntax => (list-of Path)
(define (table-add! table stx v)
(hash-table-put! table stx (cons v (table-get table stx))))
(define (table-add-if-absent! table stx v)
(unless (memq v (table-get table stx))
(table-add! table stx v)))
(define (table-get table stx)
(hash-table-get table stx (lambda () null)))
;; do-rename : syntax syntax -> (values (list-of Subterm) Table)
(define (do-rename stx rename)
(let ([t (make-hash-table)]
[old (subterms-table)])
;; loop : syntax syntax -> (list-of Subterm)
;; Puts things into the new table, too
;; If active? is #f, always returns null
(define (loop stx rename active?)
(cond [(and (syntax? stx) (syntax? rename))
(let ([paths (table-get old stx)])
(if (pair? paths)
(begin (hash-table-put! t rename paths)
(loop (syntax-e stx) (syntax-e rename) #f)
(if active?
(map (lambda (p) (make-s:rename p stx rename))
paths)
null))
(loop (syntax-e stx) (syntax-e rename) active?)))]
[(syntax? rename)
(loop stx (syntax-e rename) active?)]
[(syntax? stx)
(loop (syntax-e stx) rename active?)]
[(and (pair? stx) (pair? rename))
(append
(loop (car stx) (car rename) active?)
(loop (cdr stx) (cdr rename) active?))]
[else
null]))
(let ([subterms (loop stx rename #t)])
#;(printf "~nNew Table: ~s~n" t)
(values subterms t))))
(define (do-rename/lambda stx rename)
(if rename
(with-syntax ([(?lambda ?formals . ?body) stx])
(do-rename (cons #'?formals #'?body) rename))
(values null (subterms-table))))
(define (do-rename/let stx rename)
(if rename
(with-syntax ([(?let ?bindings . ?body) stx])
(do-rename (cons #'?bindings #'?body) rename))
(values null (subterms-table))))
(define (do-rename/case-lambda stx rename)
(if rename
(with-syntax ([(?formals . ?body) stx])
(do-rename (cons #'?formals #'?body) rename))
(values null (subterms-table))))
(define (do-rename/lsv1 stx rename)
(if rename
(with-syntax ([(?lsv ?sbindings ?vbindings . ?body) stx])
(do-rename (cons #'?sbindings (cons #'?vbindings #'?body)) rename))
(values null (subterms-table))))
(define (do-rename/lsv2 old-rename rename)
(if rename
(with-syntax ([(?sbindings ?vbindings . ?body) old-rename])
(do-rename (cons #'?vbindings #'?body) rename))
(values null (subterms-table))))
)