rpi-open-firmware/sdram.c
2016-05-16 03:01:46 +01:00

361 lines
11 KiB
C
Executable File

/*=============================================================================
Copyright (C) 2016 Kristina Brooks
All rights reserved.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
FILE DESCRIPTION
VideoCoreIV SDRAM initialization code.
=============================================================================*/
#include "lib/common.h"
#include "hardware.h"
extern uint32_t g_CPUID;
#define MR_REQUEST_SUCCESS(x) ((SD_MR_TIMEOUT_SET & x) != SD_MR_TIMEOUT_SET)
#define MR_GET_RDATA(x) ((x & SD_MR_RDATA_SET) >> SD_MR_RDATA_LSB)
#define RAM_TEST_ADDR 0xC0000000
#define RAM_TEST_PATTERN 0xAAAAAAAA
#define SIP_DEBUG(x) x
#define SCLKU_DEBUG(x) //SIP_DEBUG(x)
ALWAYS_INLINE inline void sdram_clkman_update_begin() {
CM_SDCCTL |= CM_PASSWORD | CM_SDCCTL_UPDATE_SET;
SCLKU_DEBUG(printf("%s: waiting for ACCPT (%X) ...\n", __FUNCTION__, CM_SDCCTL));
for (;;) if (CM_SDCCTL & CM_SDCCTL_ACCPT_SET) break;
SCLKU_DEBUG(printf("%s: ACCPT received! (%X)\n", __FUNCTION__, CM_SDCCTL));
}
ALWAYS_INLINE inline void sdram_clkman_update_end() {
CM_SDCCTL = CM_PASSWORD | (CM_SDCCTL & CM_SDCCTL_UPDATE_CLR);
SCLKU_DEBUG(printf("%s: waiting for ACCPT clear (%X) ...\n", __FUNCTION__, CM_SDCCTL));
for (;;) if ((CM_SDCCTL & CM_SDCCTL_ACCPT_SET) == 0) break;
SCLKU_DEBUG(printf("%s: ACCPT cleared! (%X)\n", __FUNCTION__, CM_SDCCTL));
}
ALWAYS_INLINE void sdram_reset_phy_lines() {
SIP_DEBUG(printf("%s: resetting APHY/DPHY lines ...\n", __FUNCTION__));
/* politely tell sdc that we'll be messing with address lines */
APHY_CSR_PHY_BIST_CNTRL_SPR = 0x30;
DPHY_CSR_GLBL_DQ_DLL_RESET = 0x1;
APHY_CSR_GLBL_ADDR_DLL_RESET = 0x1;
/* stall ... */
SD_CS;
SD_CS;
SD_CS;
SD_CS;
DPHY_CSR_GLBL_DQ_DLL_RESET = 0x0;
APHY_CSR_GLBL_ADDR_DLL_RESET = 0x0;
SIP_DEBUG(printf("%s: waiting for DPHY master PLL to lock ...\n", __FUNCTION__));
for (;;) if ((DPHY_CSR_GLBL_MSTR_DLL_LOCK_STAT & 0xFFFF) == 0xFFFF) break;
SIP_DEBUG(printf("%s: DPHY master PLL locked!\n", __FUNCTION__));
}
void sdram_init_late() {
uint32_t ctrl = 0x4;
SD_CS = (SD_CS & ~(SD_CS_DEL_KEEP_SET|SD_CS_DPD_SET|SD_CS_RESTRT_SET)) | SD_CS_STBY_SET;
/* wait for SDRAM controller to go down */
SIP_DEBUG(printf("%s: waiting for SDRAM controller to go down (%X) ...\n", __FUNCTION__, SD_CS));
for (;;) if ((SD_CS & SD_CS_SDUP_SET) == 0) break;
SIP_DEBUG(printf("%s: SDRAM controller down!\n", __FUNCTION__));
/* disable SDRAM clock */
sdram_clkman_update_begin();
CM_SDCCTL = (CM_SDCCTL & ~(CM_SDCCTL_ENAB_SET|CM_SDCCTL_CTRL_SET)) | CM_PASSWORD;
sdram_clkman_update_end();
SIP_DEBUG(printf("%s: SDRAM clock disabled!\n", __FUNCTION__));
/* left */
APHY_CSR_DDR_PLL_PWRDWN = 0;
APHY_CSR_DDR_PLL_GLOBAL_RESET = 0;
APHY_CSR_DDR_PLL_POST_DIV_RESET = 0;
APHY_CSR_DDR_PLL_VCO_FREQ_CNTRL0 = (1 << 16) | 0x53 /* magic */;
APHY_CSR_DDR_PLL_VCO_FREQ_CNTRL1 = 0;
APHY_CSR_DDR_PLL_MDIV_VALUE = 0;
APHY_CSR_DDR_PLL_GLOBAL_RESET = 1;
SIP_DEBUG(printf("%s: waiting for APHY DDR PLL to lock ...\n", __FUNCTION__));
for (;;) if (APHY_CSR_DDR_PLL_LOCK_STATUS & (1 << 16)) break;
SIP_DEBUG(printf("%s: APHY DDR PLL locked!\n", __FUNCTION__));
APHY_CSR_DDR_PLL_POST_DIV_RESET = 1;
sdram_clkman_update_begin();
CM_SDCCTL = CM_PASSWORD | (ctrl << CM_SDCCTL_CTRL_LSB) | (CM_SDCCTL & CM_SDCCTL_CTRL_CLR);
sdram_clkman_update_end();
SIP_DEBUG(printf("%s: CM_SDCCTL = 0x%X\n", __FUNCTION__, CM_SDCCTL));
/* second stage magic values */
SD_SA = 0x0C293395;
SD_SB = 0x0F9;
SD_SC = 0x32200743;
SD_SD = 0x71810F66;
SD_SE = 0x10412136;
SD_PT1 = 0x137B828;
SD_PT2 = 0x0F96;
SD_MRT = 0x3;
sdram_reset_phy_lines();
/* wait for address line pll to come back */
SIP_DEBUG(printf("%s: waiting for APHY global PLL to lock ...\n", __FUNCTION__));
for (;;) if (APHY_CSR_GLBL_ADR_DLL_LOCK_STAT == 3) break;
SIP_DEBUG(printf("%s: APHY global PLL locked!\n", __FUNCTION__));
/* tell sdc we're done messing with address lines */
APHY_CSR_PHY_BIST_CNTRL_SPR = 0x0;
/* woo, turn on sdram! */
SD_CS = (0x200042 & ~(SD_CS_STOP_SET|SD_CS_STBY_SET)) | SD_CS_RESTRT_SET;
}
unsigned int sdram_read_mr(unsigned int addr) {
while ((SD_MR & SD_MR_DONE_SET) != SD_MR_DONE_SET) {}
SD_MR = addr & 0xFF;
unsigned int mrr;
while (((mrr = SD_MR) & SD_MR_DONE_SET) != SD_MR_DONE_SET) {}
return mrr;
}
unsigned int sdram_write_mr(unsigned int addr, unsigned int data, bool wait) {
while ((SD_MR & SD_MR_DONE_SET) != SD_MR_DONE_SET) {}
SD_MR = (addr & 0xFF) | ((data & 0xFF) << 8) | SD_MR_RW_SET;
if (wait) {
unsigned int mrr;
while (((mrr = SD_MR) & SD_MR_DONE_SET) != SD_MR_DONE_SET) {}
if (mrr & SD_MR_TIMEOUT_SET)
panic("MR write timed out (addr=%d data=0x%X)", addr, data);
return mrr;
}
else {
return 0;
}
}
void sdram_reset_phy() {
printf("%s: resetting SDRAM PHY ...\n", __FUNCTION__);
/* reset PHYC */
SD_PHYC = SD_PHYC_PHYRST_SET;
udelay(64);
SD_PHYC = 0;
printf("%s: resetting DPHY CTRL ...\n", __FUNCTION__);
DPHY_CSR_DQ_PHY_MISC_CTRL = 0x7;
DPHY_CSR_DQ_PAD_MISC_CTRL = 0x0;
DPHY_CSR_BOOT_READ_DQS_GATE_CTRL = 0x11;
sdram_reset_phy_lines();
APHY_CSR_PHY_BIST_CNTRL_SPR = 0x0;
}
static void sdram_set_clock_source(unsigned int source, unsigned int div_) {
CM_SDCDIV = CM_PASSWORD | (div_ << CM_SDCDIV_DIV_LSB);
CM_SDCCTL = CM_PASSWORD | (CM_SDCCTL & CM_SDCCTL_SRC_CLR) | source;
CM_SDCCTL |= CM_PASSWORD | CM_SDCCTL_ENAB_SET;
printf("%s: source set to %d, div to %d, waiting for BUSY set (%X) ... \n", __FUNCTION__, source, div_, CM_SDCCTL);
for (;;) if (CM_SDCCTL & CM_SDCCTL_BUSY_SET) break;
printf("%s: BUSY set! (%X)\n", __FUNCTION__, CM_SDCCTL);
}
static void sdram_init_clkman()
{
uint32_t ctrl = 0;
sdram_clkman_update_begin();
CM_SDCCTL = CM_PASSWORD | (ctrl << CM_SDCCTL_CTRL_LSB) | (CM_SDCCTL & CM_SDCCTL_CTRL_CLR);
sdram_clkman_update_end();
}
static const char* lpddr2_manufacturer_name(uint32_t mr) {
switch (mr) {
case 1: return "Samsung";
case 2: return "Qimonda";
case 3: return "Elpida";
case 4: return "Etron";
case 5: return "Nanya";
case 6: return "Hynix";
default: return "Unknown";
}
}
static const char* lpddr2_density(uint32_t mr) {
/*
* i'm so stupid, why did i not notice that LPDDR2
* spec listed those as bits, not bytes *sigh*
*/
switch ((mr & 0x33) >> 3) {
case 1: return "128MB";
case 2: return "256MB";
case 3: return "512MB";
case 4: return "1GB";
case 5: return "2GB";
case 6: return "4GB";
default: return "Unknown";
}
}
static void sdram_calibrate() {
/* some hw revisions require different slews */
bool st = ((g_CPUID >> 4) & 0xFFF) == 0x14;
uint32_t dq_slew = (st ? 2 : 3);
/* i don't get it, the spec says do not use this register */
sdram_write_mr(0xFF, 0, true);
/* RL = 6 / WL = 3 */
sdram_write_mr(LPDDR2_MR_DEVICE_FEATURE_2, 4, true);
APHY_CSR_ADDR_PAD_DRV_SLEW_CTRL = 0x333;
DPHY_CSR_DQ_PAD_DRV_SLEW_CTRL = (dq_slew << 8) | (dq_slew << 4) | 3;
printf("%s: DPHY_CSR_DQ_PAD_DRV_SLEW_CTRL = 0x%X\n", __FUNCTION__, DPHY_CSR_DQ_PAD_DRV_SLEW_CTRL);
/* tell sdc we want to calibrate */
APHY_CSR_PHY_BIST_CNTRL_SPR = 0x20;
APHY_CSR_ADDR_PVT_COMP_CTRL = 0x1;
printf("%s: waiting for address PVT calibration ...\n", __FUNCTION__);
for (;;) if (APHY_CSR_ADDR_PVT_COMP_STATUS & 2) break;
DPHY_CSR_DQ_PVT_COMP_CTRL = 0x1;
printf("%s: waiting for data PVT calibration ...\n", __FUNCTION__);
for (;;) if (DPHY_CSR_DQ_PVT_COMP_STATUS & 2) break;
/* tell sdc we're done calibrating */
APHY_CSR_PHY_BIST_CNTRL_SPR = 0x0;
/* send calibration command */
uint32_t old_mrt = SD_MRT;
SD_MRT = 20;
printf("%s: waiting for SDRAM calibration command ...\n", __FUNCTION__);
SD_MR = LPDDR2_MR_CALIBRATION | (0xFF << 8) | SD_MR_RW_SET | SD_MR_HI_Z_SET;
while ((SD_MR & SD_MR_DONE_SET) != SD_MR_DONE_SET) {}
SD_MRT = old_mrt;
sdram_write_mr(LPDDR2_MR_IO_CONFIG, is_thing ? 3 : 2, false);
}
static void sdram_selftest()
{
volatile uint32_t* p = (volatile uint32_t*)RAM_TEST_ADDR;
printf("Testing SDRAM ...\n");
for (int i = 0; i < 0x100000; i++) {
p[i] = RAM_TEST_PATTERN;
if (p[i] != RAM_TEST_PATTERN)
panic("sdram initialization failed (idx=%d exptected=0x%x got=0x%x)", i, RAM_TEST_PATTERN, p[i]);
}
printf("SDRAM test successful!\n");
}
void sdram_init() {
uint32_t vendor_id, bc;
printf("%s: (0) SD_CS = 0x%X\n", __FUNCTION__, SD_CS);
PM_SMPS = PM_PASSWORD | 0x1;
A2W_SMPS_LDO1 = A2W_PASSWORD | 0x40000;
A2W_SMPS_LDO0 = A2W_PASSWORD | 0x0;
A2W_XOSC_CTRL |= A2W_PASSWORD | A2W_XOSC_CTRL_DDREN_SET;
/*
* STEP 1:
* configure the low-frequency PLL and enable SDC and perform
* the calibration sequence.
*/
sdram_set_clock_source(CM_SRC_OSC, 1);
sdram_init_clkman();
sdram_reset_phy();
/* magic values */
SD_SA = 0x6E3395;
SD_SB = 0x0F9;
SD_SC = 0x6000431;
SD_SD = 0x10000011;
SD_SE = 0x10106000;
SD_PT1 = 0x0AF002;
SD_PT2 = 0x8C;
SD_MRT = 0x3;
SD_CS = 0x200042;
/* wait for SDRAM controller */
printf("%s: waiting for SDUP (%X) ...\n", __FUNCTION__, SD_CS);
for (;;) if (SD_CS & SD_CS_SDUP_SET) break;
printf("%s: SDRAM controller has arrived! (%X)\n", __FUNCTION__, SD_CS);
/* RL = 6 / WL = 3 */
sdram_write_mr(LPDDR2_MR_DEVICE_FEATURE_2, 4, false);
sdram_calibrate();
/* identify installed memory */
vendor_id = sdram_read_mr(LPDDR2_MR_MANUFACTURER_ID);
if (!MR_REQUEST_SUCCESS(vendor_id)) {
panic("vendor id memory register read timed out");
}
vendor_id = MR_GET_RDATA(vendor_id);
bc = sdram_read_mr(LPDDR2_MR_METRICS);
if (!MR_REQUEST_SUCCESS(bc)) {
panic("basic configuration memory register read timed out");
}
bc = MR_GET_RDATA(bc);
printf("SDRAM Type: %s %s LPDDR2 (BC=0x%X)\n",
lpddr2_manufacturer_name(vendor_id),
lpddr2_density(bc),
bc);
/*
* STEP 2:
* after calibration, enable high-freq SDRAM PLL. because we're
* running from cache, we can freely mess with SDRAM clock without
* any issues, removing the need to copy the SDRAM late init stuff
* to bootrom ram. if later code that's running from SDRAM wants to
* mess with SDRAM clock it would need to do that.
*/
sdram_init_late();
sdram_selftest();
}