Some examples from Coq, and equivalents in Cur
* Examples of Coq code, and what one wishes one could do. * Examples of similar model in Cur, and what is currently required.
This commit is contained in:
parent
5fe50b4758
commit
63357484d9
35
examples/try.rkt
Normal file
35
examples/try.rkt
Normal file
|
@ -0,0 +1,35 @@
|
||||||
|
#lang cur
|
||||||
|
|
||||||
|
(require
|
||||||
|
cur/stdlib/sugar
|
||||||
|
cur/stdlib/nat
|
||||||
|
cur/stdlib/prop)
|
||||||
|
|
||||||
|
|
||||||
|
;; TODO: Axioms
|
||||||
|
;; TODO: implicits
|
||||||
|
;; No way to define axioms in Cur, yet, although it is a simple change.
|
||||||
|
;; No implicits in Cur, yet
|
||||||
|
(define (plus_0_n (f_equal : (-> (A : Type) (a1 : A) (a2 : A) (B : Type) (f : (-> A B))
|
||||||
|
(== A a1 a2)
|
||||||
|
(== B (f a1) (f a2)))) (n : Nat))
|
||||||
|
(match n
|
||||||
|
;; TODO: This should work
|
||||||
|
#:return (== Nat n (plus z n))
|
||||||
|
[z (refl Nat z)]
|
||||||
|
[(s (n : Nat))
|
||||||
|
(f_equal Nat n (plus z n) Nat s (recur n))]))
|
||||||
|
(:: plus_n_0
|
||||||
|
(forall
|
||||||
|
(f_equal : (-> (A : Type) (a1 : A) (a2 : A) (B : Type) (f : (-> A B))
|
||||||
|
(== A a1 a2) (== B (f a1) (f a2))))
|
||||||
|
(n : Nat)
|
||||||
|
(== Nat n (plus z n))))
|
||||||
|
|
||||||
|
#;(define (plus_n_Sm (n : Nat) (m : Nat))
|
||||||
|
(elim Nat Type
|
||||||
|
(lambda (n : Nat) (== Nat (plus n m) (plus m n)))
|
||||||
|
(plus_n_0 m)
|
||||||
|
(lambda (y : Nat) (ih : ))
|
||||||
|
(elim == Type)))
|
||||||
|
#;(:: plus_n_Sm (forall (n : Nat) (m : Nat) (== (s (plus n m)) (plus n (s m)))))
|
57
examples/try.v
Normal file
57
examples/try.v
Normal file
|
@ -0,0 +1,57 @@
|
||||||
|
Definition plus_n_O : forall n : nat, n = n + 0 :=
|
||||||
|
fun n : nat =>
|
||||||
|
nat_ind (fun n0 : nat => n0 = n0 + 0) eq_refl
|
||||||
|
(fun (n0 : nat) (IHn : n0 = n0 + 0) => f_equal S IHn) n.
|
||||||
|
|
||||||
|
Definition plus_n_Sm : forall n m : nat, S (n + m) = n + S m :=
|
||||||
|
fun n m : nat =>
|
||||||
|
nat_ind (fun n0 : nat => S (n0 + m) = n0 + S m) eq_refl
|
||||||
|
(fun (n0 : nat) (IHn : S (n0 + m) = n0 + S m) => f_equal S IHn) n.
|
||||||
|
|
||||||
|
Definition plus_comm : forall n m : nat, n + m = m + n :=
|
||||||
|
fun n m : nat =>
|
||||||
|
nat_ind (fun n0 : nat => n0 + m = m + n0) (plus_n_O m)
|
||||||
|
(fun (y : nat) (H : y + m = m + y) =>
|
||||||
|
eq_ind (S (m + y)) (fun n0 : nat => S (y + m) = n0)
|
||||||
|
(f_equal S H) (m + S y) (plus_n_Sm m y)) n.
|
||||||
|
|
||||||
|
Fixpoint ft (l: nat): Type :=
|
||||||
|
match l with
|
||||||
|
| O => unit
|
||||||
|
| S n => (bool * ft n) % type
|
||||||
|
end.
|
||||||
|
|
||||||
|
Fixpoint concat {n1 n2} : ft n1 -> ft n2 -> ft (n1 + n2) :=
|
||||||
|
match n1 as n1_PAT return ft n1_PAT -> ft n2 -> ft (n1_PAT + n2) with
|
||||||
|
| O => fun _ l2 => l2
|
||||||
|
| S n => fun l1 =>
|
||||||
|
match l1 with
|
||||||
|
| (b, l1') => fun l2 => (b, concat l1' l2)
|
||||||
|
end
|
||||||
|
end.
|
||||||
|
|
||||||
|
(* Question 1: Ideally, I could have the following syntactic sugar, can you do that?
|
||||||
|
|
||||||
|
Fixpoint concat {n1 n2} (l1: ft n1) (l2: ft n2) : ft (n1 + n2) :=
|
||||||
|
match n1 with
|
||||||
|
| O => l2
|
||||||
|
| S n =>
|
||||||
|
match l1 with
|
||||||
|
| (b, l1') => (b, concat l1' l2)
|
||||||
|
end
|
||||||
|
end.
|
||||||
|
|
||||||
|
*)
|
||||||
|
|
||||||
|
Definition concat' {n1 n2} (l1: ft n1) (l2: ft n2): ft (n1 + n2) :=
|
||||||
|
eq_rect_r ft (concat l2 l1) (plus_comm _ _).
|
||||||
|
|
||||||
|
Goal (@concat' 1 1 (true, tt) (false, tt)) = (false, (true, tt)).
|
||||||
|
Proof.
|
||||||
|
unfold concat'.
|
||||||
|
simpl (@concat 1 1 (false, tt) (true, tt)).
|
||||||
|
cbv delta [plus_comm plus_n_Sm plus_n_O nat_ind eq_ind].
|
||||||
|
simpl.
|
||||||
|
(* Question 2: In this step, Coq does a large number of computation to compute a proof term to eq_refl. This is super inefficient for any function application of eq_rect_r. Is there a possible way to customize the method of reducing a term in your system? For example, when you see a eq_rect_r, directly computes two types (which should be equivalent) and check if they are convertible. If yes, tag new type on the term directly. *)
|
||||||
|
reflexivity.
|
||||||
|
Qed.
|
Loading…
Reference in New Issue
Block a user