Compare commits

...

15 Commits

Author SHA1 Message Date
William J. Bowman
1760a02665
Trying to fix performance bugs with conversion 2016-03-25 20:47:27 -04:00
William J. Bowman
3de6a132cd
Separate judgment for checking constructors 2016-03-25 17:18:34 -04:00
William J. Bowman
8b58736101
Split wf and validity checking
Previously, wf was serving double-duty checking that Γ was well-formed
w.r.t. Δ, and then checking that Δ was valid (i.e. satisfied
positivity conditions and such).

Now these are different judgments.
2016-03-25 17:18:34 -04:00
William J. Bowman
0b0a2eed40
Added some missing wf checks 2016-03-25 17:18:34 -04:00
William J. Bowman
64c8edfde4
where #t is stupid; use side-condition 2016-03-25 17:18:34 -04:00
William J. Bowman
2382151166
A different language for each reduction strategies
Now, call-by-value and call-by-name have different languages, making it
slightly simpler to define new reduction strategies.
2016-03-25 17:18:34 -04:00
William J. Bowman
816da683ec
Fixed bug in well-formed inductive type checker 2016-03-25 17:18:33 -04:00
William J. Bowman
543a7f93e6
[Perf. Bug] Split subtyping/reduce in conversion
Previous, conversion was doing both reduction and subtyping.
Now, conversion first reduces, then appeal to the subtyping judgment.
The subtyping judgment may recur on conversion for certain subtyping
rules.
This fixes the hack in reduction that reduced Π types.

Unfortunately, after a little bisecting, this seems to introduce a major
performance bug, doubling running time.
2016-03-25 17:17:49 -04:00
William J. Bowman
13dd8bc299
Abstracted reduction
Abstracted reduction relation; now small step rules are separated from
the reduction strategy, and the reduction relation does not needlessly
pass around the inductive environment.
2016-03-25 17:01:55 -04:00
William J. Bowman
2870a346d7
Improved documentation 2016-03-24 20:28:31 -04:00
William J. Bowman
64b18334ae
Improving readability of core, at performance cost
* Using better meta-variable names when possible
* Adding pre-conditions to metafunctions to separate logic from
  failure
* Removed clause order dependency as much as possible
* Performance cost of 10%. Since the Redex core is quite slow anyway,
  and readability/auditability of this core is paramount, accepting
  cost.
2016-03-24 19:59:15 -04:00
William J. Bowman
7cd18766a2
Check redundancy in core tests 2016-03-24 17:09:15 -04:00
William J. Bowman
b6d4888b1c
No need for α-equivalent?; handled by Redex 2016-03-24 17:02:56 -04:00
William J. Bowman
4951da6884
s/parameter/index/
Cur does not have parameters, only indices
2016-03-24 16:50:44 -04:00
William J. Bowman
b9fe82d462
Separated core from API to core
Some functions in the core are only used for reflection, and are not
necessary for the core model. These have been moved to a separate module.
2016-03-24 16:36:26 -04:00
4 changed files with 393 additions and 300 deletions

View File

@ -0,0 +1,65 @@
#lang racket/base
;; Additional API utilities for interacting with the core, but aren't necessary for the model of the core language.
(require
(except-in
"redex-core.rkt"
apply)
redex/reduction-semantics)
(provide
(all-from-out "redex-core.rkt")
(all-defined-out))
(define x? (redex-match? ttL x))
(define t? (redex-match? ttL t))
(define e? (redex-match? ttL e))
(define U? (redex-match? ttL U))
(define Δ? (redex-match? ttL Δ))
(define Γ? (redex-match? tt-typingL Γ))
(define Ξ? (redex-match? tt-ctxtL Ξ))
(define Φ? (redex-match? tt-ctxtL Φ))
(define Θ? (redex-match? tt-ctxtL Θ))
(define Θv? (redex-match? tt-cbvL Θv))
(define E? (redex-match? tt-cbvL E))
(define v? (redex-match? tt-cbvL v))
(define-metafunction ttL
subst-all : t (x ...) (e ...) -> t
[(subst-all t () ()) t]
[(subst-all t (x_0 x ...) (e_0 e ...))
(subst-all (subst t x_0 e_0) (x ...) (e ...))])
(define-metafunction ttL
Δ-set : Δ x t ((x : t) ...) -> Δ
[(Δ-set Δ x t any) (Δ (x : t any))])
(define-metafunction ttL
Δ-union : Δ Δ -> Δ
[(Δ-union Δ ) Δ]
[(Δ-union Δ_2 (Δ_1 (x : t any)))
((Δ-union Δ_2 Δ_1) (x : t any))])
(define-metafunction tt-redL
step : Δ e -> e
[(step Δ e)
,(car (apply-reduction-relation (tt-->cbv (term Δ)) (term e)))])
(define-metafunction tt-typingL
Γ-union : Γ Γ -> Γ
[(Γ-union Γ ) Γ]
[(Γ-union Γ_2 (Γ_1 x : t))
((Γ-union Γ_2 Γ_1) x : t)])
(define-metafunction tt-typingL
Γ-set : Γ x t -> Γ
[(Γ-set Γ x t) (Γ x : t)])
;; NB: Depends on clause order
(define-metafunction tt-typingL
Γ-remove : Γ x -> Γ
[(Γ-remove x) ]
[(Γ-remove (Γ x : t) x) Γ]
[(Γ-remove (Γ x_0 : t_0) x_1) (Γ-remove Γ x_1)])

View File

@ -28,19 +28,14 @@
(U ::= (Unv i))
(D x c ::= variable-not-otherwise-mentioned)
(Δ ::= (Δ (D : t ((c : t) ...))))
(t e ::= U (λ (x : t) e) x (Π (x : t) t) (e e)
(t e ::= U (λ (x : e) e) x (Π (x : e) e) (e e)
;; TODO: Might make more sense for methods to come first
;; (elim inductive-type motive (indices ...) (methods ...) discriminant)
(elim D e (e ...) (e ...) e))
#:binding-forms
(λ (x : t) e #:refers-to x)
(Π (x : t_0) t_1 #:refers-to x))
(define x? (redex-match? ttL x))
(define t? (redex-match? ttL t))
(define e? (redex-match? ttL e))
(define U? (redex-match? ttL U))
(define Δ? (redex-match? ttL Δ))
;;; ------------------------------------------------------------------------
;;; Universe typing
@ -67,79 +62,95 @@
----------------
(unv-pred (Unv i_1) (Unv i_2) (Unv i_3))])
(define-metafunction ttL
α-equivalent? : t t -> #t or #f
[(α-equivalent? t_0 t_1)
,(alpha-equivalent? ttL (term t_0) (term t_1))])
;; Replace x by t_1 in t_0
(define-metafunction ttL
subst : t x t -> t
[(subst t_0 x t_1)
(substitute t_0 x t_1)])
(define-metafunction ttL
subst-all : t (x ...) (e ...) -> t
[(subst-all t () ()) t]
[(subst-all t (x_0 x ...) (e_0 e ...))
(subst-all (subst t x_0 e_0) (x ...) (e ...))])
;;; ------------------------------------------------------------------------
;;; Primitive Operations on signatures Δ (those operations that do not require contexts)
;; TODO: Define generic traversals of Δ and Γ ?
(define-metafunction ttL
Δ-in-dom : Δ D -> #t or #f
[(Δ-in-dom D)
#f]
[(Δ-in-dom (Δ (D : t any)) D)
#t]
[(Δ-in-dom (Δ (D_!_0 : any_D any)) (name D D_!_0))
(Δ-in-dom Δ D)])
(define-metafunction ttL
Δ-in-constructor-dom : Δ c -> #t or #f
[(Δ-in-constructor-dom c)
#f]
[(Δ-in-constructor-dom (Δ (D : any_D ((c_!_0 : any) ... (c_i : any_i) any_r ...))) (name c_i c_!_0))
#t]
[(Δ-in-constructor-dom (Δ (D : any_D ((c_!_0 : any) ...))) (name c c_!_0))
(Δ-in-constructor-dom Δ c)])
;;; TODO: Might be worth maintaining the above bijection between Δ and maps for performance reasons
;; TODO: This is doing too many things
;; NB: Depends on clause order
(define-metafunction ttL
Δ-ref-type : Δ x -> t or #f
[(Δ-ref-type x) #f]
[(Δ-ref-type (Δ (x : t any)) x) t]
[(Δ-ref-type (Δ (x_0 : t_0 ((x_1 : t_1) ... (x : t) (x_2 : t_2) ...))) x) t]
[(Δ-ref-type (Δ (x_0 : t_0 any)) x) (Δ-ref-type Δ x)])
Δ-ref-type : Δ_0 D_0 -> t
#:pre (Δ-in-dom Δ_0 D_0)
[(Δ-ref-type (Δ (D : t any)) D)
t]
[(Δ-ref-type (Δ (D_!_0 : t any)) (name D D_!_0))
(Δ-ref-type Δ D)])
;; Returns the inductively defined type that x constructs
(define-metafunction ttL
Δ-key-by-constructor : Δ_0 c_0 -> D
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-key-by-constructor (Δ (D : any_D ((c_!_0 : any_c) ... (c : any_ci) any_r ...))) (name c c_!_0))
D]
[(Δ-key-by-constructor (Δ (D : any_D ((c_!_0 : any_c) ...))) (name c c_!_0))
(Δ-key-by-constructor Δ c)])
;; Returns the constructor map for the inductively defined type D in the signature Δ
(define-metafunction ttL
Δ-ref-constructor-map : Δ_0 D_0 -> ((c : t) ...)
#:pre (Δ-in-dom Δ_0 D_0)
[(Δ-ref-constructor-map (Δ (D : any_D any)) D)
any]
[(Δ-ref-constructor-map (Δ (D_!_0 : any_D any)) (name D D_!_0))
(Δ-ref-constructor-map Δ D)])
;; Return the type of the constructor c_i
(define-metafunction ttL
Δ-ref-constructor-type : Δ_0 c_0 -> t
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-ref-constructor-type Δ c)
t
(where D (Δ-key-by-constructor Δ c))
(where (any_1 ... (c : t) any_0 ...)
(Δ-ref-constructor-map Δ D))])
(define-metafunction ttL
Δ-set : Δ x t ((x : t) ...) -> Δ
[(Δ-set Δ x t any) (Δ (x : t any))])
(define-metafunction ttL
Δ-union : Δ Δ -> Δ
[(Δ-union Δ ) Δ]
[(Δ-union Δ_2 (Δ_1 (x : t any)))
((Δ-union Δ_2 Δ_1) (x : t any))])
;; TODO: Should not use Δ-ref-type
(define-metafunction ttL
Δ-ref-constructor-type : Δ x x -> t
[(Δ-ref-constructor-type Δ x_D x_ci)
(Δ-ref-type Δ x_ci)])
;; Get the list of constructors for the inducitvely defined type x_D
;; NB: Depends on clause order
(define-metafunction ttL
Δ-ref-constructors : Δ x -> (x ...) or #f
[(Δ-ref-constructors x_D) #f]
[(Δ-ref-constructors (Δ (x_D : t_D ((x : t) ...))) x_D)
(x ...)]
[(Δ-ref-constructors (Δ (x_1 : t_1 any)) x_D)
(Δ-ref-constructors Δ x_D)])
Δ-ref-constructors : Δ_0 D_0 -> (c ...)
#:pre (Δ-in-dom Δ_0 D_0)
[(Δ-ref-constructors Δ D)
(c ...)
(where ((c : any) ...) (Δ-ref-constructor-map Δ D))])
;; TODO: Mix of pure Redex/escaping to Racket sometimes is getting confusing.
;; TODO: Justify, or stop.
;; NB: Depends on clause order
(define-metafunction ttL
sequence-index-of : any (any ...) -> natural
[(sequence-index-of any_0 (any_0 any ...))
0]
[(sequence-index-of any_0 (any_1 any ...))
[(sequence-index-of (name any_0 any_!_0) (any_!_0 any ...))
,(add1 (term (sequence-index-of any_0 (any ...))))])
;; Get the index of the constructor x_ci in the list of constructors for x_D
;; Get the index of the constructor c_i
(define-metafunction ttL
Δ-constructor-index : Δ x x -> natural
[(Δ-constructor-index Δ x_D x_ci)
(sequence-index-of x_ci (Δ-ref-constructors Δ x_D))])
Δ-constructor-index : Δ_0 c_0 -> natural
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-constructor-index Δ c)
(sequence-index-of c (Δ-ref-constructors Δ D))
(where D (Δ-key-by-constructor Δ c))])
;;; ------------------------------------------------------------------------
;;; Operations that involve contexts.
@ -152,31 +163,15 @@
;; NB: There is a bijection between this an a vector expressions
(Θ ::= hole (Θ e)))
(define Ξ? (redex-match? tt-ctxtL Ξ))
(define Φ? (redex-match? tt-ctxtL Φ))
(define Θ? (redex-match? tt-ctxtL Θ))
;; TODO: Might be worth it to actually maintain the above bijections, for performance reasons.
;; Applies the term t to the telescope Ξ.
;; TODO: Test
#| TODO:
| This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true
| that (convert t (Ξ-apply Ξ t))?
| Maybe not. t is a lambda whose type is convert to (Ξ-apply Ξ t)? Yes.
|#
(define-metafunction tt-ctxtL
Ξ-apply : Ξ t -> t
[(Ξ-apply hole t) t]
[(Ξ-apply (Π (x : t) Ξ) t_0) (Ξ-apply Ξ (t_0 x))])
;; Compute the number of arguments in a Ξ
(define-metafunction tt-ctxtL
Ξ-length : Ξ -> natural
[(Ξ-length hole) 0]
[(Ξ-length (Π (x : t) Ξ)) ,(add1 (term (Ξ-length Ξ)))])
(define-metafunction tt-ctxtL
list->Θ : (e ...) -> Θ
[(list->Θ ()) hole]
@ -188,115 +183,101 @@
[(apply e_f e ...)
(in-hole (list->Θ (e ...)) e_f)])
;; Reference an expression in Θ by index; index 0 corresponds to the the expression applied to a hole.
(define-metafunction tt-ctxtL
Θ-ref : Θ natural -> e or #f
[(Θ-ref hole natural) #f]
[(Θ-ref (in-hole Θ (hole e)) 0) e]
[(Θ-ref (in-hole Θ (hole e)) natural) (Θ-ref Θ ,(sub1 (term natural)))])
;;; ------------------------------------------------------------------------
;;; Computing the types of eliminators
;; Return the parameters of x_D as a telescope Ξ
;; TODO: Define generic traversals of Δ and Γ ?
;; Return the indices of D as a telescope Ξ
(define-metafunction tt-ctxtL
Δ-ref-parameter-Ξ : Δ x -> Ξ or #f
[(Δ-ref-parameter-Ξ (Δ (x_D : (in-hole Ξ U) any)) x_D)
Ξ]
[(Δ-ref-parameter-Ξ (Δ (x_1 : t_1 any)) x_D)
(Δ-ref-parameter-Ξ Δ x_D)]
[(Δ-ref-parameter-Ξ Δ x)
#f])
;; Returns the telescope of the arguments for the constructor x_ci of the inductively defined type x_D
(define-metafunction tt-ctxtL
Δ-constructor-telescope : Δ x x -> Ξ
[(Δ-constructor-telescope Δ x_D x_ci)
Δ-ref-index-Ξ : Δ_0 D_0 -> Ξ
#:pre (Δ-in-dom Δ_0 D_0)
[(Δ-ref-index-Ξ any_Δ any_D)
Ξ
(where (in-hole Ξ (in-hole Θ x_D))
(Δ-ref-constructor-type Δ x_D x_ci))])
(where (in-hole Ξ U) (Δ-ref-type any_Δ any_D))])
;; Returns the parameter arguments as an apply context of the constructor x_ci of the inductively
;; defined type x_D
;; Returns the telescope of the arguments for the constructor c_i of the inductively defined type D
(define-metafunction tt-ctxtL
Δ-constructor-parameters : Δ x x -> Θ
[(Δ-constructor-parameters Δ x_D x_ci)
Θ
(where (in-hole Ξ (in-hole Θ x_D))
(Δ-ref-constructor-type Δ x_D x_ci))])
Δ-constructor-telescope : Δ_0 c_0 -> Ξ
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-constructor-telescope Δ c)
Ξ
(where D (Δ-key-by-constructor Δ c))
(where (in-hole Ξ (in-hole Θ D))
(Δ-ref-constructor-type Δ c))])
;; Inner loop for Δ-constructor-inductive-telescope
;; Returns the index arguments as an apply context of the constructor c_i of the inductively
;; defined type D
(define-metafunction tt-ctxtL
Δ-constructor-indices : Δ_0 c_0 -> Θ
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-constructor-indices Δ c)
Θ
(where D (Δ-key-by-constructor Δ c))
(where (in-hole Ξ (in-hole Θ D))
(Δ-ref-constructor-type Δ c))])
;; Fold over the telescope Φ building a new telescope with only arguments of type D
;; NB: Depends on clause order
(define-metafunction tt-ctxtL
inductive-loop : x Φ -> Φ
[(inductive-loop x_D hole) hole]
[(inductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))
(Π (x : (in-hole Φ (in-hole Θ x_D))) (inductive-loop x_D Φ_1))]
[(inductive-loop x_D (Π (x : t) Φ_1))
(inductive-loop x_D Φ_1)])
inductive-loop : D Φ -> Φ
[(inductive-loop D hole) hole]
[(inductive-loop D (Π (x : (in-hole Φ (in-hole Θ D))) Φ_1))
(Π (x : (in-hole Φ (in-hole Θ D))) (inductive-loop D Φ_1))]
[(inductive-loop D (Π (x : t) Φ_1))
(inductive-loop D Φ_1)])
;; Returns the inductive arguments to the constructor x_ci of the inducitvely defined type x_D
;; Returns the inductive arguments to the constructor c_i
(define-metafunction tt-ctxtL
Δ-constructor-inductive-telescope : Δ x x -> Ξ
[(Δ-constructor-inductive-telescope Δ x_D x_ci)
(inductive-loop x_D (Δ-constructor-telescope Δ x_D x_ci))])
Δ-constructor-inductive-telescope : Δ_0 c_0 -> Ξ
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-constructor-inductive-telescope Δ c)
(inductive-loop D (Δ-constructor-telescope Δ c))
(where D (Δ-key-by-constructor Δ c))])
;; Returns the inductive hypotheses required for eliminating the inductively defined type x_D with
;; motive t_P, where the telescope Φ are the inductive arguments to a constructor for x_D
;; Fold over the telescope Φ computing a new telescope with all
;; inductive arguments of type D modified to an inductive hypotheses
;; computed from the motive t.
(define-metafunction tt-ctxtL
hypotheses-loop : x t Φ -> Φ
[(hypotheses-loop x_D t_P hole) hole]
[(hypotheses-loop x_D t_P (name any_0 (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)))
;; TODO: Instead of this nonsense, it might be simpler to pass in the type of t_P and use that
;; as/to compute the type of the hypothesis.
hypotheses-loop : D t Φ -> Φ
[(hypotheses-loop D t_P hole) hole]
[(hypotheses-loop D t_P (name any_0 (Π (x : (in-hole Φ (in-hole Θ D))) Φ_1)))
(Π (x_h : (in-hole Φ ((in-hole Θ t_P) (Ξ-apply Φ x))))
(hypotheses-loop x_D t_P Φ_1))
(where x_h ,(variable-not-in (term (x_D t_P any_0)) 'x-ih))])
;; Computes the type of the eliminator for the inductively defined type x_D with a motive whose result
;; is in universe U.
;;
;; The type of (elim x_D U) is something like:
;; (∀ (P : (∀ a -> ... -> (D a ...) -> U))
;; (method_ci ...) -> ... ->
;; (a -> ... -> (D a ...) ->
;; (P a ... (D a ...))))
;;
;; x_D is an inductively defined type
;; U is the sort the motive
;; x_P is the name of the motive
;; Ξ_P*D is the telescope of the parameters of x_D and
;; the witness of type x_D (applied to the parameters)
;; Ξ_m is the telescope of the methods for x_D
(hypotheses-loop D t_P Φ_1))
(where x_h ,(variable-not-in (term (D t_P any_0)) 'x-ih))])
;; Returns the inductive hypotheses required for the elimination method of constructor c_i for
;; inductive type D, when eliminating with motive t_P.
(define-metafunction tt-ctxtL
Δ-constructor-inductive-hypotheses : Δ D c t -> Ξ
[(Δ-constructor-inductive-hypotheses Δ D c_i t_P)
(hypotheses-loop D t_P (Δ-constructor-inductive-telescope Δ D c_i))])
Δ-constructor-inductive-hypotheses : Δ_0 c_0 t -> Ξ
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-constructor-inductive-hypotheses Δ c_i t_P)
(hypotheses-loop D t_P (Δ-constructor-inductive-telescope Δ c_i))
(where D (Δ-key-by-constructor Δ c_i))])
;; Returns the type of the method corresponding to c_i
(define-metafunction tt-ctxtL
Δ-constructor-method-type : Δ D c t -> t
[(Δ-constructor-method-type Δ D c_i t_P)
Δ-constructor-method-type : Δ_0 c_0 t -> t
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-constructor-method-type Δ c_i t_P)
(in-hole Ξ_a (in-hole Ξ_h ((in-hole Θ_p t_P) (Ξ-apply Ξ_a c_i))))
(where Θ_p (Δ-constructor-parameters Δ D c_i))
(where Ξ_a (Δ-constructor-telescope Δ D c_i))
(where Ξ_h (Δ-constructor-inductive-hypotheses Δ D c_i t_P))])
(where Θ_p (Δ-constructor-indices Δ c_i))
(where Ξ_a (Δ-constructor-telescope Δ c_i))
(where Ξ_h (Δ-constructor-inductive-hypotheses Δ c_i t_P))])
;; Return the types of the methods required to eliminate D with motive e
(define-metafunction tt-ctxtL
Δ-method-types : Δ D e -> (t ...)
Δ-method-types : Δ_0 D_0 e -> (t ...)
#:pre (Δ-in-dom Δ_0 D_0)
[(Δ-method-types Δ D e)
,(map (lambda (c) (term (Δ-constructor-method-type Δ D ,c e))) (term (c ...)))
,(map (lambda (c) (term (Δ-constructor-method-type Δ ,c e))) (term (c ...)))
(where (c ...) (Δ-ref-constructors Δ D))])
;; Return the type of the motive to eliminate D
(define-metafunction tt-ctxtL
Δ-motive-type : Δ D U -> t
Δ-motive-type : Δ_0 D_0 U -> t
#:pre (Δ-in-dom Δ_0 D_0)
[(Δ-motive-type Δ D U)
(in-hole Ξ_P*D U)
(where Ξ (Δ-ref-parameterΔ D))
(where Ξ (Δ-ref-indexΔ D))
;; A fresh name to bind the discriminant
(where x ,(variable-not-in (term (Δ D Ξ)) 'x-D))
;; The telescope (∀ a -> ... -> (D a ...) hole), i.e.,
@ -310,51 +291,22 @@
;;; inductively defined type x with a motive whose result is in universe U
(define-extended-language tt-redL tt-ctxtL
(v ::= x U (Π (x : t) t) (λ (x : t) t) (in-hole Θv c))
(Θv ::= hole (Θv v))
(C-elim ::= (elim D t_P (e_i ...) (e_m ...) hole))
;; call-by-value
(E ::= hole (E e) (v E)
(elim D e (e ...) (v ... E e ...) e)
(elim D e (e ...) (v ...) E)
;; reduce under Π (helps with typing checking)
;; TODO: Should be done in conversion judgment
(Π (x : v) E) (Π (x : E) e)))
(C-elim ::= (elim D t_P (e_i ...) (e_m ...) hole)))
(define Θv? (redex-match? tt-redL Θv))
(define E? (redex-match? tt-redL E))
(define v? (redex-match? tt-redL v))
#|
| The elim form must appear applied like so:
| (elim D U v_P m_0 ... m_i m_j ... m_n p ... (c_i a ...))
|
| Where:
| D is the inductive being eliminated
| U is the universe of the result of the motive
| v_P is the motive
| m_{0..n} are the methods
| p ... are the parameters of x_D
| c_i is a constructor of x_d
| a ... are the arguments to c_i
|
| Using contexts, this appears as (in-hole Θ ((elim D U) v_P))
|#
(define-metafunction tt-ctxtL
is-inductive-argument : Δ D t -> #t or #f
is-inductive-argument : Δ_0 D_0 t -> #t or #f
#:pre (Δ-in-dom Δ_0 D_0)
;; Think this only works in call-by-value. A better solution would
;; be to check position of the argument w.r.t. the current
;; method. requires more arguments, and more though.q
[(is-inductive-argument Δ D (in-hole Θ c_i))
,(and (memq (term c_i) (term (Δ-ref-constructors Δ D))) #t)])
;; Generate recursive applications of the eliminator for each inductive argument of type x_D.
;; In more detail, given motive t_P, parameters Θ_p, methods Θ_m, and arguments Θ_i to constructor
;; x_ci for x_D, for each inductively smaller term t_i of type (in-hole Θ_p x_D) inside Θ_i,
;; generate: (elim x_D U t_P Θ_m ... Θ_p ... t_i)
;; Generate recursive applications of the eliminator for each inductive argument in Θ.
;; TODO TTEESSSSSTTTTTTTT
(define-metafunction tt-redL
Δ-inductive-elim : Δ D C-elim Θ -> Θ
Δ-inductive-elim : Δ_0 D_0 C-elim Θ -> Θ
#:pre (Δ-in-dom Δ_0 D_0)
;; NB: If metafunction fails, recursive
;; NB: elimination will be wrong. This will introduced extremely sublte bugs,
;; NB: inconsistency, failure of type safety, and other bad things.
@ -368,33 +320,70 @@
[(Δ-inductive-elim any ... (Θ_c t_i))
(Δ-inductive-elim any ... Θ_c)])
(define tt-->
(reduction-relation tt-redL
(--> (Δ (in-hole E ((λ (x : t_0) t_1) t_2)))
(Δ (in-hole E (subst t_1 x t_2)))
-->β)
(--> (Δ (in-hole E (elim D e_motive (e_i ...) (v_m ...) (in-hole Θv_c c))))
(Δ (in-hole E (in-hole Θ_mi v_mi)))
;; Find the method for constructor c_i, relying on the order of the arguments.
(where natural (Δ-constructor-index Δ D c))
(where v_mi ,(list-ref (term (v_m ...)) (term natural)))
;; Generate the inductive recursion
(where Θ_ih (Δ-inductive-elim Δ D (elim D e_motive (e_i ...) (v_m ...) hole) Θv_c))
(where Θ_mi (in-hole Θ_ih Θv_c))
-->elim)))
#|
| The elim form must appear applied like so:
| (elim D v_P (i ...) (m_0 ... m_i m_j ... m_n) (c_i a ...))
|
| Where:
| D is the inductive being eliminated
| v_P is the motive
| m_{0..n} are the methods
| i ... are the indices of D
| c_i is a constructor of D
| a ... are the arguments to c_i
|
| Steps to (m_i a ... ih ...), where ih are computed from the recursive arguments to c_i
|#
(define (tt--> D)
(term-let ([Δ D])
(reduction-relation tt-redL
(--> ((λ (x : t_0) t_1) t_2)
(subst t_1 x t_2)
-->β)
(--> (elim D e_motive (e_i ...) (e_m ...) (in-hole Θ_c c))
(in-hole Θ_mi e_mi)
(side-condition (term (Δ-in-constructor-dom Δ c)))
;; Find the method for constructor c_i, relying on the order of the arguments.
(where natural (Δ-constructor-index Δ c))
(where e_mi ,(list-ref (term (e_m ...)) (term natural)))
;; Generate the inductive recursion
(where Θ_ih (Δ-inductive-elim Δ D (elim D e_motive (e_i ...) (e_m ...) hole) Θ_c))
(where Θ_mi (in-hole Θ_ih Θ_c))
-->elim))))
(define-metafunction tt-redL
step : Δ e -> e
[(step Δ e)
e_r
(where (_ e_r) ,(car (apply-reduction-relation tt--> (term (Δ e)))))])
(define-extended-language tt-cbvL tt-redL
;; NB: Not exactly right; only true when c is a constructor
(v ::= x U (Π (x : t) t) (λ (x : t) t) (in-hole Θv c))
(Θv ::= hole (Θv v))
(E ::= hole (E e) (v E)
(elim D e (e ...) (v ... E e ...) e)
(elim D e (e ...) (v ...) E)
;; NB: These seem necessary, despite fixed conversion relation.
(Π (x : E) e) (Π (x : v) E)))
(define-extended-language tt-cbnL tt-cbvL
(E ::= hole (E e) (elim D e (e ...) (e ...) E)))
(define-extended-language tt-head-redL tt-cbvL
(C-λ ::= Θ (λ (x : t) C-λ))
(λv ::= x U (Π (x : t) t) (elim D e (e ...) (e ...) (in-hole C-λ x)))
(v ::= (in-hole C-λ λv)))
;; Lazyness has lots of implications, such as on conversion and test suite.
(define (tt-->cbn D) (context-closure (tt--> D) tt-cbnL E))
;; NB: Note that CIC specifies reduction via "contextual closure".
;; Perhaps they mean compatible-closure. Unfortunately, it's too slow.
(define (tt-->full D) (compatible-closure (tt--> D) tt-redL e))
;; Head reduction
(define (tt-->head-red D) (context-closure (tt--> D) tt-head-redL C-λ))
;; CBV, plus under Π
(define (tt-->cbv D) (context-closure (tt--> D) tt-cbvL E))
(define-metafunction tt-redL
reduce : Δ e -> e
[(reduce Δ e)
e_r
(where (_ e_r)
,(car (apply-reduction-relation* tt--> (term (Δ e)) #:cache-all? #t)))])
,(car (apply-reduction-relation* (tt-->cbv (term Δ)) (term e) #:cache-all? #t))])
;;; ------------------------------------------------------------------------
;;; Type checking and synthesis
@ -403,49 +392,54 @@
;; NB: There may be a bijection between Γ and Ξ. That's interesting.
;; NB: Also a bijection between Γ and a list of maps from x to t.
(Γ ::= (Γ x : t)))
(define Γ? (redex-match? tt-typingL Γ))
(define-judgment-form tt-typingL
#:mode (convert I I I I)
#:contract (convert Δ Γ t t)
[----------------- "≡-Base"
(convert Δ Γ t t)]
[(where (t_!_0 ...) (t_0 t_1))
(where (t t) ((reduce Δ t_0) (reduce Δ t_1)))
----------------- "≡-Normal"
(convert Δ Γ t_0 t_1)])
(define-judgment-form tt-typingL
#:mode (subtype I I I I)
#:contract (subtype Δ Γ t t)
[(convert Δ Γ t_0 t_1)
------------- "≼-≡"
(subtype Δ Γ t_0 t_1)]
[(side-condition ,(<= (term i_0) (term i_1)))
----------------- "≼-Unv"
(convert Δ Γ (Unv i_0) (Unv i_1))]
(subtype Δ Γ (Unv i_0) (Unv i_1))]
[(where t_2 (reduce Δ t_0))
(where t_3 (reduce Δ t_1))
(side-condition (α-equivalent? t_2 t_3))
----------------- "≼-αβ"
(convert Δ Γ t_0 t_1)]
[(convert Δ (Γ x : t_0) t_1 t_2)
[(convert Δ Γ t_0 t_1)
(subtype Δ (Γ x_0 : t_0) e_0 (subst e_1 x_1 x_0))
----------------- "≼-Π"
(convert Δ Γ (Π (x : t_0) t_1) (Π (x : t_0) t_2))])
(subtype Δ Γ (Π (x_0 : t_0) e_0) (Π (x_1 : t_1) e_1))])
(define-metafunction tt-typingL
Γ-union : Γ Γ -> Γ
[(Γ-union Γ ) Γ]
[(Γ-union Γ_2 (Γ_1 x : t))
((Γ-union Γ_2 Γ_1) x : t)])
Γ-in-dom : Γ x -> #t or #f
[(Γ-in-dom x)
#f]
[(Γ-in-dom (Γ x : t) x)
#t]
[(Γ-in-dom (Γ x_!_0 : t) (name x x_!_0))
(Γ-in-dom Γ x)])
(define-metafunction tt-typingL
Γ-set : Γ x t -> Γ
[(Γ-set Γ x t) (Γ x : t)])
Γ-ref : Γ_0 x_0 -> t
#:pre (Γ-in-dom Γ_0 x_0)
[(Γ-ref (Γ x : t) x)
t]
[(Γ-ref (Γ x_!_0 : t_0) (name x_1 x_!_0))
(Γ-ref Γ x_1)])
;; NB: Depends on clause order
(define-metafunction tt-typingL
Γ-ref : Γ x -> t or #f
[(Γ-ref x) #f]
[(Γ-ref (Γ x : t) x) t]
[(Γ-ref (Γ x_0 : t_0) x_1) (Γ-ref Γ x_1)])
;; NB: Depends on clause order
(define-metafunction tt-typingL
Γ-remove : Γ x -> Γ
[(Γ-remove x) ]
[(Γ-remove (Γ x : t) x) Γ]
[(Γ-remove (Γ x_0 : t_0) x_1) (Γ-remove Γ x_1)])
;; TODO: After reading https://coq.inria.fr/doc/Reference-Manual006.html#sec209, not convinced this is right.
(define-metafunction tt-typingL
nonpositive : x t -> #t or #f
@ -467,39 +461,44 @@
,(and (term (nonpositive x t_0)) (term (positive x t)))]
[(positive x t) #t])
(define-metafunction tt-typingL
positive* : x (t ...) -> #t or #f
[(positive* x_D ()) #t]
[(positive* x_D (t_c t_rest ...))
;; Replace the result of the constructor with (Unv 0), to avoid the result being considered a
;; nonpositive position.
,(and (term (positive x_D (in-hole Ξ (Unv 0)))) (term (positive* x_D (t_rest ...))))
(where (in-hole Ξ (in-hole Θ x_D)) t_c)])
;; Holds when the type t is a valid type for a constructor of D
(define-judgment-form tt-typingL
#:mode (valid-constructor I I)
#:contract (valid-constructor D t)
;; NB TODO: Ignore the "positive" occurrence of D in the result; this is hacky way to do this
[(side-condition (positive D (in-hole Ξ (Unv 0))))
---------------------------------------------------------
(valid-constructor D (name t_c (in-hole Ξ (in-hole Θ D))))])
;; Holds when the signature Δ is valid
(define-judgment-form tt-typingL
#:mode (valid I)
#:contract (valid Δ)
[-------- "Valid-Empty"
(valid )]
[(valid Δ)
(type-infer Δ t_D U_D)
(valid-constructor D t_c) ...
(type-infer Δ ( D : t_D) t_c U_c) ...
----------------- "Valid-Inductive"
(valid (Δ (D : t_D ((c : t_c) ...))))])
;; Holds when the signature Δ and typing context Γ are well-formed.
(define-judgment-form tt-typingL
#:mode (wf I I)
#:contract (wf Δ Γ)
[----------------- "WF-Empty"
(wf )]
[(valid Δ)
----------------- "WF-Empty"
(wf Δ )]
[(type-infer Δ Γ t t_0)
(wf Δ Γ)
----------------- "WF-Var"
(wf Δ (Γ x : t))]
[(wf Δ )
(type-infer Δ t_D U_D)
(type-infer Δ ( x_D : t_D) t_c U_c) ...
;; NB: Ugh this should be possible with pattern matching alone ....
(side-condition ,(map (curry equal? (term x_D)) (term (x_D* ...))))
(side-condition (positive* x_D (t_c ...)))
----------------- "WF-Inductive"
(wf (Δ (x_D : t_D
;; Checks that a constructor for x actually produces an x, i.e., that
;; the constructor is well-formed.
((x_c : (name t_c (in-hole Ξ (in-hole Θ x_D*)))) ...))) )])
(wf Δ (Γ x : t))])
;; TODO: Bi-directional and inference?
;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
@ -514,28 +513,36 @@
----------------- "DTR-Unv"
(type-infer Δ Γ U_0 U_1)]
[(where t (Δ-ref-type Δ x))
[(side-condition (Δ-in-dom Δ x))
(where t (Δ-ref-type Δ x))
(wf Δ Γ)
----------------- "DTR-Inductive"
(type-infer Δ Γ x t)]
[(where t (Γ-ref Γ x))
[(side-condition (Δ-in-constructor-dom Δ x))
(where t (Δ-ref-constructor-type Δ x))
(wf Δ Γ)
----------------- "DTR-Constructor"
(type-infer Δ Γ x t)]
[(side-condition (Γ-in-dom Γ x))
(where t (Γ-ref Γ x))
(wf Δ Γ)
----------------- "DTR-Start"
(type-infer Δ Γ x t)]
[(type-infer Δ (Γ x : t_0) e t_1)
(type-infer Δ Γ (Π (x : t_0) t_1) U)
[(type-infer-normal Δ (Γ x : t_0) e t_1)
(type-infer-normal Δ Γ (Π (x : t_0) t_1) U)
----------------- "DTR-Abstraction"
(type-infer Δ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
[(type-infer Δ Γ t_0 U_1)
(type-infer Δ (Γ x : t_0) t U_2)
[(type-infer-normal Δ Γ t_0 U_1)
(type-infer-normal Δ (Γ x : t_0) t U_2)
(unv-pred U_1 U_2 U)
----------------- "DTR-Product"
(type-infer Δ Γ (Π (x : t_0) t) U)]
[(type-infer Δ Γ e_0 t)
;; Cannot rely on type-infer producing normal forms.
(where (Π (x_0 : t_0) t_1) (reduce Δ t))
[(type-infer-normal Δ Γ e_0 (Π (x_0 : t_0) t_1))
(type-check Δ Γ e_1 t_0)
(where t_3 (subst t_1 x_0 e_1))
----------------- "DTR-Application"
@ -543,20 +550,32 @@
[(type-check Δ Γ e_c (apply D e_i ...))
(type-infer Δ Γ e_motive (name t_motive (in-hole Ξ U)))
(convert Δ Γ t_motive (Δ-motive-type Δ D U))
(type-infer-normal Δ Γ e_motive (name t_motive (in-hole Ξ U)))
(subtype Δ Γ t_motive (Δ-motive-type Δ D U))
(where (t_m ...) (Δ-method-types Δ D e_motive))
(type-check Δ Γ e_m t_m) ...
----------------- "DTR-Elim_D"
(type-infer Δ Γ (elim D e_motive (e_i ...) (e_m ...) e_c)
(apply e_motive e_i ... e_c))])
;; Try to keep types in normal form, which simplifies a few things
(define-judgment-form tt-typingL
#:mode (type-infer-normal I I I O)
#:contract (type-infer-normal Δ Γ e t)
[(type-infer Δ Γ e t)
----------------- "DTR-Red"
(type-infer-normal Δ Γ e (reduce Δ t))])
(define-judgment-form tt-typingL
#:mode (type-check I I I I)
#:contract (type-check Δ Γ e t)
[(type-infer Δ Γ e t_0)
(convert Δ Γ t t_0)
(type-infer Δ Γ t U)
(subtype Δ Γ t t_0)
----------------- "DTR-Check"
(type-check Δ Γ e t)])

View File

@ -2,7 +2,7 @@
;; This module just provide module language sugar over the redex model.
(require
(except-in "redex-core.rkt" apply)
"redex-core-api.rkt"
redex/reduction-semantics
racket/provide-syntax
(for-syntax
@ -11,7 +11,7 @@
racket/syntax
(except-in racket/provide-transform export)
racket/require-transform
(except-in "redex-core.rkt" apply)
"redex-core-api.rkt"
redex/reduction-semantics))
(provide
;; Basic syntax
@ -273,8 +273,9 @@
(define (cur-identifier-bound? id)
(let ([x (syntax->datum id)])
(and (x? x)
(or (term (Γ-ref ,(gamma) ,x))
(term (Δ-ref-type ,(delta) ,x))))))
(or (term (Γ-in-dom ,(gamma) ,x))
(term (Δ-in-dom ,(delta) ,x))
(term (Δ-in-constructor-dom ,(delta) ,x))))))
(define (filter-cur-exports syn modes)
(partition (compose cur-identifier-bound? export-local-id)

View File

@ -1,7 +1,7 @@
#lang racket/base
(require
redex/reduction-semantics
cur/curnel/redex-core
cur/curnel/redex-core-api
rackunit
racket/function
(only-in racket/set set=?))
@ -16,7 +16,9 @@
(define-syntax-rule (check-not-equiv? e1 e2)
(check (compose not (default-equiv)) e1 e2))
(default-equiv (lambda (x y) (term (α-equivalent? ,x ,y))))
(default-equiv (curry alpha-equivalent? ttL))
(check-redundancy #t)
;; Syntax tests
;; ------------------------------------------------------------------------
@ -73,13 +75,10 @@
(check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B))))))
;; α-equiv and subst tests
;; ------------------------------------------------------------------------
(check-true
(term
(α-equivalent?
(Π (a : S) (Π (b : B) ((and S) B)))
(subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))
;; alpha-equivalent and subst tests
(check-equiv?
(term (subst (Π (a : A) (Π (b : B) ((and A) B))) A S))
(term (Π (a : S) (Π (b : B) ((and S) B)))))
;; Telescope tests
;; ------------------------------------------------------------------------
@ -92,10 +91,10 @@
(check (compose not telescope-equiv) e1 e2))
(check-telescope-equiv?
(term (Δ-ref-parameter,Δ nat))
(term (Δ-ref-index,Δ nat))
(term hole))
(check-telescope-equiv?
(term (Δ-ref-parameter,Δ4 and))
(term (Δ-ref-index,Δ4 and))
(term (Π (A : Type) (Π (B : Type) hole))))
(check-true (x? (term false)))
@ -105,7 +104,7 @@
;; Tests for inductive elimination
;; ------------------------------------------------------------------------
;; TODO: Insufficient tests, no tests of inductives with parameters, or complex induction.
;; TODO: Insufficient tests, no tests of inductives with indices, or complex induction.
(check-true
(redex-match? tt-ctxtL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero))))
(check-telescope-equiv?
@ -154,7 +153,7 @@
(check-not-equiv? (term (reduce (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
(term (Π (x : t) (x x))))
(check-equal? (term (Δ-constructor-index ,Δ nat zero)) 0)
(check-equal? (term (Δ-constructor-index ,Δ zero)) 0)
(check-equiv? (term (reduce ,Δ (elim nat (λ (x : nat) nat)
()
((s zero)
@ -217,7 +216,7 @@
zero)))))
(define-syntax-rule (check-equivalent e1 e2)
(check-holds (convert e1 e2)))
(check-holds (subtype e1 e2)))
(check-equivalent
(λ (x : Type) x) (λ (y : Type) y))
(check-equivalent
@ -226,19 +225,26 @@
;; Test static semantics
;; ------------------------------------------------------------------------
(check-true (term (positive* nat (nat))))
(check-true (term (positive* nat ((Π (x : (Unv 0)) (Π (y : (Unv 0)) nat))))))
(check-true (term (positive* nat ((Π (x : nat) nat)))))
(check-holds
(valid-constructor nat nat))
(check-holds
(valid-constructor nat (Π (x : (Unv 0)) (Π (y : (Unv 0)) nat))))
(check-holds
(valid-constructor nat (Π (x : nat) nat)))
;; (nat -> nat) -> nat
;; Not sure if this is actually supposed to pass
(check-false (term (positive* nat ((Π (x : (Π (y : nat) nat)) nat)))))
(check-not-holds
(valid-constructor nat (Π (x : (Π (y : nat) nat)) nat)))
;; ((Unv 0) -> nat) -> nat
(check-true (term (positive* nat ((Π (x : (Π (y : (Unv 0)) nat)) nat)))))
(check-holds
(valid-constructor nat (Π (x : (Π (y : (Unv 0)) nat)) nat)))
;; (((nat -> (Unv 0)) -> nat) -> nat)
(check-true (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) (Unv 0))) nat)) nat)))))
(check-holds
(valid-constructor nat (Π (x : (Π (y : (Π (x : nat) (Unv 0))) nat)) nat)))
;; Not sure if this is actually supposed to pass
;; ((nat -> nat) -> nat) -> nat
(check-false (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) nat)) nat)) nat)))))
(check-not-holds
(valid-constructor nat (Π (x : (Π (y : (Π (x : nat) nat)) nat)) nat)))
(check-true (judgment-holds (wf ,Δ0 )))
(check-true (redex-match? tt-redL (in-hole Ξ (Unv 0)) (term (Unv 0))))
@ -281,7 +287,8 @@
(check-holds (type-infer (Unv 0) U))
(check-holds (type-infer ( nat : (Unv 0)) nat U))
(check-holds (type-infer ( nat : (Unv 0)) (Π (x : nat) nat) U))
(check-true (term (positive* nat (nat (Π (x : nat) nat)))))
(check-holds (valid-constructor nat nat))
(check-holds (valid-constructor nat (Π (x : nat) nat)))
(check-holds
(wf ( (nat : (Unv 0) ((zero : nat)))) ))
(check-holds
@ -331,12 +338,13 @@
(check-holds (type-check ,Δtruth (λ (x : truth) (Unv 1)) (Π (x : truth) (Unv 2))))
(require (only-in cur/curnel/redex-core apply))
(check-equiv?
(term (apply (λ (x : truth) (Unv 1)) T))
(term ((λ (x : truth) (Unv 1)) T)))
(check-holds
(convert ,Δtruth (apply (λ (x : truth) (Unv 1)) T) (Unv 1)))
(subtype ,Δtruth (apply (λ (x : truth) (Unv 1)) T) (Unv 1)))
(check-holds (type-infer ,Δtruth
@ -501,7 +509,7 @@
((and B) A))))
(in-hole Ξ (Π (x : (in-hole Θ and)) U))))
(check-holds
(convert ,Δ4
(subtype ,Δ4
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))
(Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : ((and P) Q)) (Unv 0))))))
(check-holds
@ -642,7 +650,7 @@
(term (((((hole
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true)))))
(check-telescope-equiv?
(term (Δ-ref-parameter,Δ= ==))
(term (Δ-ref-index,Δ= ==))
(term (Π (A : Type) (Π (a : A) (Π (b : A) hole)))))
(check-equal?
(term (reduce ,Δ= ,refl-elim))